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Low-Complexity Patch-based No-Reference Point
Cloud Quality Metric exploiting Weighted Structure

and Texture Features
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Abstract—During the compression, transmission, and render-
ing of point clouds, various artifacts are introduced, affecting
the quality perceived by the end user. However, evaluating the
impact of these distortions on the overall quality is a challenging
task. This study introduces PST-PCQA, a no-reference point
cloud quality metric based on a low-complexity, learning-based
framework. It evaluates point cloud quality by analyzing individ-
ual patches, integrating local and global features to predict the
Mean Opinion Score. In summary, the process involves extracting
features from patches, combining them, and using correlation
weights to predict the overall quality. This approach allows us to
assess point cloud quality without relying on a reference point
cloud, making it particularly useful in scenarios where reference
data is unavailable. Experimental tests on three state-of-the-art
datasets show good prediction capabilities of PST-PCQA, through
the analysis of different feature pooling strategies and its ability to
generalize across different datasets. The ablation study confirms
the benefits of evaluating quality on a patch-by-patch basis.
Additionally, PST-PCQA’s light-weight structure, with a small
number of parameters to learn, makes it well-suited for real-time
applications and devices with limited computational capacity. For
reproducibility purposes, we made code, model, and pretrained
weights available at https://github.com/michaelneri/PST-PCQA.

Index Terms—No-reference, point cloud, deep learning, low-
complexity, quality assessment

I. INTRODUCTION

IN recent years, thanks to the increasing capability of
3D acquisition systems, point clouds have emerged as

one of the most popular formats for immersive media [1].
Point clouds consist of a collection of points defined by
geometric coordinates and optional attributes such as color
and reflectivity. They provide the users with a more immersive
experience than 2D content thanks to a realistic visualization
and the possibility of interaction [2].

Point clouds might undergo several distortions during ac-
quisition, transmission, and display [3]. Acquisition distortions
refer to errors and inaccuracies that occur during the capture
of 3D data, typically from sensors like Light Detection and
Ranging (LiDAR) or structured light cameras. When transmit-
ting these data over networks, compression is often necessary
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Fig. 1. Description of the no-reference point cloud quality assessment task.
From acquisition to rendering, the pristine point cloud is subject to several
distortions that may impact the quality perceived by the user.

to reduce the file size, thus introducing artifacts like noise,
resolution loss, or geometric inaccuracies [4], [5]. During the
display phase, hardware limitations or rendering algorithms
may further affect the quality, potentially resulting in vi-
sual inconsistencies or inaccuracies [5]. While compression
artifacts [6] are the most common distortions affecting the
rendered point cloud, several other types of distortions can
occur, which usually affect geometry and color consistency
by introducing noise [7], degrading the overall visual quality
of the content.

Given that human observers are the primary users of point
clouds in numerous applications, employing subjective quality
assessment emerges as the most direct and dependable method
for evaluating the quality of point clouds [8]. Despite its
significance, subjective quality evaluation poses challenges
due to its time-consuming nature and high cost. For the prac-
tical implementation of quality-focused point cloud systems,
there is a strong demand for objective Point Cloud Quality
Assessment (PCQA) models capable of accurately predicting
subjective quality assessments [9].

Objective quality estimators can be categorized into three
classes: Full-Reference (FR), Reduced-Reference (RR), and
No-Reference (NR). FR metrics assess quality by comparing
the target against an unaltered original, requiring complete
access to original data. RR methods need only partial original
data, e.g., compression parameters, thus balancing accuracy
with data accessibility. NR architectures, instead, evaluate
quality without any reference to the original, offering flexi-
bility in real scenarios but potentially at the cost of precision
(Figure 1). Moreover, the availability of pristine information
may be difficult at the end user device, especially in broad-
casting and telecommunication scenarios, thus motivating the
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(a) V-PCC (b) Gaussian noise (c) Downsampling (d) G-PCC
Fig. 2. Examples of compression techniques applied to the House point cloud from WPC [12] dataset: (a) V-PCC with ’geometryQP’= 35 and ’textureQP’=
45; (b) Gaussian noise with standard deviation = 0 for points’ coordinates and 16 for points’ RGB values; (c) downsampling uniformly dividing the point
cloud in 28 segments; (d) G-PCC with trisoup, ’NodeSizeLog2’= 4 and RAHT quantization step= 64.

development of no-reference metrics for immersive multime-
dia [10]. However, currently the literature lacks no-reference
methods for efficient estimation of the quality of distorted
point clouds [8], [11].

State-of-the-art NR PCQA metrics present several chal-
lenges:

• non-ML methods exhibit low correlation between pre-
dicted and ground truth quality scores [13], [14];

• methods exploiting specific features extracted from the
point clouds (e.g., texture and structure) are mainly
working in a global way on the entire point cloud [15];

• deep learning-based NR PCQA require a signifi-
cant amount of computational resources and avail-
able datasets (also needed to reduce generalization is-
sues) [16]–[18].

In this work, we introduce PST-PCQA, a low-complexity
learning-based NR PCQA for non-sparse point clouds that
outperforms state-of-the-art architectures. In more detail, PST-
PCQA splits point cloud into patches from which texture
and structure features are extracted. Those features are then
combined to predict the overall quality. This approach is
lightweight, i.e., the number of learnable parameters (1.8M) is
the lowest in the state-of-the-art, with a total decrease of 93%
with respect to the most efficient approach. This characteristic
is crucial in devices where the computational load is limited
and in applications where system response time should be real-
time.

The main contributions of this paper are as follows:
• the definition of a new lightweight NR PCQA, namely

Patch-based Structure and Texture (PST)-PCQA, that
exploits texture and structure features of the point cloud;

• a patch-wise quality estimation strategy. This approach
allows the adoption of learned weights per patch and to
improve explainability;

• an extensive analysis on state-of-the-art datasets for NR
PCQA to demonstrate the effectiveness of the approach.
Comparisons with other methods in the literature are
carried out.

The remainder of this paper is structured as follows: Section II
details the relevant works in the literature. Section III illus-
trates the proposed approach from the extraction of features
to the final prediction of the quality. Section IV reports
the performance of our NR PCQA metric on 3 state-of-the-
art datasets, providing insights on the design rationale of

the approach. Finally, Section V draws the conclusions with
possible future directions of the work.

II. RELATED WORKS

In this section, state-of-the-art metrics for the quality as-
sessment of point clouds are presented. First, FR and RR
approaches are introduced. Then, an in-depth description of
existing NR metrics is provided.

A. Full- and reduced-reference metrics

In [19], the first attempt to assess the quality of colored
point clouds was proposed. In more detail, the model PCQM
inspects both geometry-based (e.g., mean curvature) and color-
based features (e.g., lightness, chroma, and hue) to predict
the mean opinion score (MOS) of a distorted point cloud. In
this direction, in [20], the authors proposed TDESM, a FR
metric which employs 3D Difference of Gaussian filters on
both reference and distorted point clouds to extract similarity
features from edge information. The authors in [12] proposed
a FR metric that exploits 2D projections of the point cloud,
which are then analyzed using IW-SSIM for predicting the
overall quality. Instead, Zhang et al. [21] devised TCDM,
a space-aware vector autoregressive model that defines the
quality of a distorted point as the difficulty of transforming
it into its corresponding reference.

With the advent of deep learning, the research community
has started investigating the use of neural networks for quality
assessment. An example of using learning-based methods for
assessing the quality of point clouds was designed in [22].
Specifically, a Visual Geometry Group (VGG)-like Convo-
lutional Neural Network (CNN) randomly extracts patches
from both pristine and distorted point clouds to analyze both
structure and color characteristics. MOS was then predicted by
means of multilayer perceptrons (MLPs). In [23], the authors
devised Multiscale Potential Energy Discrepancy (MPED) in
which the differences between pristine and distorted point
clouds were measured via a multiscale potential energy ap-
proach, inspired by classical physics.

To the best of our knowledge, two reduced reference met-
rics are available in the state-of-the-art. In [24] the authors
exploited information of the artifact type (e.g., Video-based
Point Cloud Compression (V-PCC) compression parameters)
to predict the MOS of the distorted point cloud. Moreover,
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Fig. 3. Description of the proposed approach.

in [25] V-PCC parameters are estimated from the original and
the distorted point cloud to predict the MOS.

As stated before, FR and RR metrics are effective but hardly
applicable in real scenarios due to the unavailability of the
pristine point cloud at the receiver.

B. No-reference metrics
Similarly to FR and RR metrics, the research community

had initially started investigating the quality of distorted point
clouds by extracting hard-engineered features, i.e., character-
istics coming from by domain knowledge and expertise. For
instance, in [26], the authors proposed BQE-CVP, a NR metric
that extracts features from the distorted point cloud such as
geometric and color information. MOS is then predicted using
a Random Forest (RF). Similarly, in [27] the distorted point
cloud was projected into quality-related geometry and color
feature domains in order to apply Natural Scene Statistics
(NSS) and entropy-based features. Finally, a Support Vector
Regression (SVR) model was devised to regress the quality
of the input point cloud. In this direction, Liu et al. [28]
analyzed the relationship between V-PCC texture quantization
parameters and perceptual coding distortion, providing the
basis for the definition of a bitstream-layer NR model. How-
ever, extracting hand-crafted and compression-based features
yielded poor performance. Hence, learning-based methods em-
ploying neural networks have shown improved performances
with respect to traditional methods thanks to their ability
to automatically extract relevant features for predicting point
clouds’ quality.

The first relevant work using deep learning was proposed
in [9], where 2D projections of the distorted point cloud were
processed by several CNNs, whose features were concatenated
to predict the overall quality. Similarly, in [29], IT-PCQA
was devised to predict the MOS of distorted point clouds
by inspecting multi-perspective images. Training of the Deep
Neural Network (DNN) was carried out as a domain adaptation
problem, exploiting the subjective scores available for 2D
natural images datasets in the state-of-the-art and transferring
this knowledge to the NR PCQA task.

Together with the release of a large-scale NR PCQA dataset,
the authors in [8] proposed a 3D CNN which exploited sparse
convolutions directly on points, namely ResSCNN. This is
the first approach that tackles the computational complexity
problem of NR metrics in this field, as ResSCNN encom-
passed only 1.2M learnable parameters. However, similarly
to prior works, its performance on well-known datasets were
insufficient to be directly employed in real applications.

In [17] the authors proposed EEP-3DQA which employs
lightweight Swin-Transformer [30] as the backbone for feature
extraction to predict the quality of both point clouds and mesh
models. Similarly to [9], [29], projections of the distorted 3D
model are extracted from six standard viewpoints and then
analyzed by the DNN. An example of using Graph Convolu-
tional Network (GCN) in PCQA was devised in [31] which
attentively analyzes the structural and textural perturbations
within point clouds. Moreover, the approach involves a multi-
task framework that predicts both distortion type and degree,
increasing its sensitivity to several distortion types.

In [32] the authors proposed to process static and dynamic
views from a moving camera to have a more comprehensive
assessment of point cloud quality. Specifically, VQA PC con-
sists in rotating the camera around the point cloud, extracting
spatial and temporal features using deep learning models,
and combining them to predict the overall quality of the
distorted point cloud. Following the same approach, Wang
et al. [11] designed MOD-PCQA that exploits multiscale
feature extraction to evaluate point cloud quality from various
observational distances. The DNN incorporates a three-branch
network structure designed to extract features from different
scales, enhancing the model’s ability to capture and analyze
the perceptual quality of point clouds.

A combination of learning-based and traditional features
was proposed in [15]. Specifically, the architecture named
MFE-Net integrates an adaptive feature extraction (AFE) mod-
ule for local hand-crafted feature extraction, a local quality
acquisition (LQA) model for deep feature learning, and a
global quality acquisition (GQA) layer that aggregates these
assessments into the global predicted MOS. Another proposed
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Fig. 4. SFE and TFE neural architectures.

NR metric is Plain-PCQA [18], where spatial geometric prop-
erties and texture details are jointly analyzed.

Recent works, rather than processing 2D projections, em-
ployed patches from the point cloud to extract features and
regress the MOS [16], [33].

Based on these new approaches, we propose a low-
complexity deep learning metric that outperforms existing
state-of-the-art models in predicting the MOS of non-sparse
distorted point clouds. Specifically, PST-PCQA splits the point
cloud into patches to separately extract structure and texture
features, which are then integrated to estimate the overall
quality. Moreover, thanks to its lightweight design, this model
can be effectively employed in environments with limited
resources, differently from other learning-based approaches
employing DNN.

III. PROPOSED APPROACH

The objective of this work is to estimate the quality
of a generic point cloud as perceived by an average ob-
server, the MOS, without having information of its pristine
version. Specifically, a point cloud is denoted as a set of
N points that represents the surface of a 3D object, i.e.,
P = {pi, i = 1, . . . , N}. A single point is described as a
vector containing its spatial coordinates and color information,
pi = [xi, yi, zi, ri, gi, bi]. The set P can be denoted as a
N × 6 matrix, where N is in the order of millions. Our
approach aims at mapping the input point cloud and its quality
f : RN×6 → R+ such as

f(P) = yP , (1)

where yP ∈ R+ is the MOS of the point cloud P .
Figure 3 illustrates all the steps of the proposed architecture.

Initially, a preprocessing step is applied to the distorted point
cloud to obtain K patches with Np points. Then, these portions
of point cloud are fed to the Structure Feature Extractor (SFE)
and the Texture Feature Extractor (TFE) modules to provide
patch-wise features, analyzing both their structure and color
patterns. Finally, a patch-wise and a global prediction of the
quality of the distorted point cloud is provided as output.

A. Patch extraction

Using point clouds patches can enhance computational
efficiency and facilitate feature extraction as smaller data
segments allow for more in-depth analysis and processing. In
fact, raw point clouds, especially those with high densities,
may have millions of points, which can overwhelm memory
and processing capabilities. Exploiting patches of point cloud
can fasten the feature extraction process, whose characteristics
can be combined by the MOS prediction module for both
local and global analysis. Following this rationale, all points’
coordinates [xi, yi, zi] of the point cloud P are first normalized
in the range 1 and 2001, i.e., in a sphere with radius 1000,
for training stability and generalization purposes [33]. Then,
FPS [34] and k-NN [35] are employed to obtain K centers
and to sample Np points from the point cloud to compose the
patches. Finally, all patches are concatenated along the channel
dimension to compose the tensor with shape K ×Np × 6.

B. Structure and texture feature extractors

SFE and TFE neural networks adopt a layered feature
extraction process, inspired by the hierarchical feature learning
framework of PointNet++ [36]. Specifically, they utilize the
sampling, grouping, and PointNet (SGP) layers [36] to create
an abstraction layer, thus obtaining a transformed representa-
tion of the point cloud. This mechanism facilitates localized
point cloud analysis that can be used to predict the MOS. Our
method differs from [36] in few key aspects:

• we adopt grouped convolutions to reduce the total number
of trainable parameters;

• we replace Farthest Point Sampling (FPS) in the sampling
phase with random sampling to enhance diversity and
improve generalization capabilities;

• we employ the ELU [37] activation function instead of
LeakyReLU. In fact, ELU leads to faster learning and
to significantly better generalization performance than
vanilla ReLUs and LeakyReLU on networks with more
than 5 layers.

Figure 4 depicts the structure of SFE and TFE that only
differ in the number of input points. A patch with shape Nt×6
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Fig. 5. SFE and TFE common structure.

is fed to the TFE, whereas its downsampled version Ns ×
6 is elaborated by the SFE. By doing so, it is possible to
simultaneously analyze patch’s structural and texture features.

Each patch is analyzed by two sequential SGP layers.
During the first pass, the patch is downsampled to N1 points,
grouped into k centers by means of the k-Nearest Neighbour
(k-NN) [35] algorithm, and processed by the PointNet [36]
layer, yielding the first transformed representation of the input
patch, with shape N1×d1. The last abstraction layer samples
N2 points, extracts k centers, and projects each point to a
d2-dimensional space, resulting in a N2 × d2 matrix.

In addition, the point cloud patch is analyzed by a learnable
convolution with stride s = ⌊N/d2⌋. The result of each branch
is concatenated each other to obtain the patch’s features f ∈
RN2×256.

Finally, patch-wise features from both branches are arranged
to compose texture and structure features of the input point
cloud P , namely fSFE ∈ RK×N2×256 and fTFE ∈ RK×N2×256

respectively.

C. Patch-wise and global quality estimation

To fuse the extracted characteristics from both SFE and TFE
and yield a feature vector per patch fP ∈ RK×512, we employ
Global Variance Pooling (GVP) and a combination of Conv1d,
batch normalization, and ELU (CBE) as follows:

fP = CBE(GVP(fSFE ⊗ fTFE)), (2)

where ⊗ denotes the concatenation function. Then, a LBE
(linear-batchnorm1d-elu) and a linear layer are employed to
predict patch-wise weights wP ∈ RK and scores ŷP ∈ RK

from fP {
wP = LBE(fP)

ŷP = Linear(fP).
(3)

The predicted point cloud MOS ŷP is then obtained by
combining patch-wise scores with their weights

ŷP = EK [wP · ŷP ] (4)

where EK [·] refers to the expected value across patches.

Figure 5 shows how the prediction of the point cloud quality
yP is estimated from its features fSFE and fTFE. The model
is trained by minimizing the Mean Squared Error (MSE) of
both patch-wise and global MOS estimation with respect to
the ground truth

L(ŷP , ŷP , yP) = αL2(ŷP , yP) + βL2(ŷP , yP) (5)

where α ∈ R+ and β ∈ R+ are two scalars for balancing the
patch-wise and global MOS estimation errors, respectively.

IV. EXPERIMENTAL RESULTS

A. Datasets

To assess the performance of PST-PCQA with respect to
architectures in the literature, three state-of-the-art NR PCQA
datasets are analyzed.

WPC [12]. It includes 20 original reference point clouds,
each subject to five distortions: Gaussian noise, downsampling,
and three point cloud compression coding techniques pro-
posed by MPEG (Geometry-based Point Cloud Compression
(G-PCC) octave, G-PCC trisoup, and V-PCC) [40]. These
distortions present a wide range of geometric and textural vari-
ations, offering substantial examples for learning. For every
original reference point cloud, 37 distorted versions are cre-
ated, leading to a total of 740 distorted point clouds (calculated
as 37 distortions multiplied by 20 original samples) within the
WPC database, all derived from 20 original reference point
clouds. WPC contains inanimate everyday objects (e.g., office
supplies) with diverse geometric and textural complexity.

SIAT-PCQD [39]. The SIAT-PCQD database comprises 20
reference point clouds, which undergo several preprocessing
steps like subsampling, rotation, and scaling to achieve 10-
bit geometric precision. Each point cloud is then subject to
distortions using different geometry parameters (ranging from
20 to 32 in 4 increments) and texture parameters (ranging
from 27 to 42 in 5 increments) through the V-PCC [40]
coding method, resulting in 17 distinct distorted versions per
reference point cloud. Consequently, the database encompasses
a total of 340 distorted point clouds. SIAT-PCQD contains
both human figures and objects. The human category consists
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Fig. 6. Scatter plots between normalized predicted and ground truth MOS for WPC [12], SJTU-PCQA [38], and SIAT-PCQD [39] datasets, respectively.
Identity line is plotted in red for comparison with ideal quality estimator.

of six full-body figures and four upper-body figures, while
objects include ten different instances (e.g., building).

SJTU-PCQA [38]. It comprises 10 publicly accessible
reference point clouds, each subject to 7 types of synthetic
distortions with 6 intensity levels. These distortions include
octree-based compression, color noise, geometry Gaussian
noise, downscaling, and combinations thereof. Consequently,
the SJTU-PCQA database features a total of 378 distorted
point clouds, obtained from 9 samples multiplied by 7 dis-
tortions and then by 6 levels. This dataset has been included
to analyze the performance of our approach on a dataset with
few samples, thus evaluating its convergence stability. SJTU-
PCQA includes six human models and four inanimate objects.

All the distorted versions of the same point clouds are
either in the training or in the testing dataset to avoid data
leakage. Pooling selection and ablation studies are carried
out on WPC [12] since, according to the literature, it is the
most difficult NR PCQA dataset for data-driven approaches. In
fact, WPC database incorporates more intricate distortions and
exploits more levels of degradation, modeling real use cases.

B. Metrics

The criteria for evaluating the relationship between pre-
dicted scores and quality labels are Spearman Rank Order
Correlation Coefficient (SRCC), Kendall Rank Correlation
Coefficient (KRCC), Pearson Linear Correlation Coefficient
(PLCC), and Root Mean Squared Error (RMSE). A high-
performing model is indicated by SRCC, KRCC, and PLCC
values approaching 1, and a RMSE value near 0.

C. Implementation details

In this work, for fair comparison with state-of-the-art ap-
proaches, we split the datasets as follows:

• WPC: We follow training and testing split as in [9];
• SIAT-PCQD: Leave-one-out 20 cross validation has been

implemented;
• SJTU-PCQA: Leave-one-out 10 cross validation has

been adopted.

Following [33], K = 16 patches with Np = 14900
points are extracted from the distorted point clouds. Then,
Ns = 1024 points are randomly sampled from the patch
for analyzing its structure. Differently, Nt = 8192 points
are selected by means of the k-NN algorithm [35]. In both
TFE and SFE, dimensionality of features are set to d1 = 128
and d2 = 256, with number of points N1 = 512 and
N2 = 256, respectively. During SGP layers, the number of
groups in the k-NN algorithm is k = 32. Overall, the number
of trainable parameters of the learning-based metric is 1.8M,
highlighting the low-complexity of the approach. The model
is trained for 400 epochs with batches of size 4. A cosine
annealing learning rate is employed with initial learning rate
ηmax = 0.001 with a maximum number of steps Tmax = 400.
Both terms of the loss function in Eq. (5) equally contribute
to the backpropagation algorithm (α = 1 and β = 1).
The overall implementation and evaluation of PST-PCQA
has been designed in Python 3.10 in a workstation with a
CUDA-enabled graphic processing unit (NVIDIA RTX 4070).
Pytorch-Lightning and Weights&Biases are utilized for train-
ing and logging, respectively. Further implementation details
are available at https://github.com/michaelneri/PST-PCQA.

D. Analysis on the type of pooling function

Generally, the choice of pooling functions significantly
affects the precision of the prediction in learning-based ap-
proaches [41]. To this aim, in Table I an analysis on which
type of feature extraction, both first- (e.g., Global Max Pooling
(GMP) and Global Average Pooling (GAP)) and second-order
(e.g., GVP) statistical moments, works better on WPC [12] is
presented. When combined, GAP + GVP and GMP + GVP
show improved performance over GAP and GMP alone in
terms of SRCC and KRCC. However, it is worth highlighting
the effectiveness of GVP for this task, with the highest
correlation to MOS in terms of PLCC, SRCC, and KRCC.
This suggests that combining pooling methods can capture
a broader range of features that may correlate with human
perception, but the combination might not always lead to
improvement.

https://github.com/michaelneri/PST-PCQA
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TABLE I
PERFORMANCE OF DIFFERENT FEATURE POOLING ON THE WPC DATASET.

Pooling PLCC ↑ SRCC ↑ KRCC ↑ RMSE ↓
GMP 0.8501 0.8295 0.6506 10.4842
GAP 0.8657 0.8511 0.6703 10.2192

GAP + GVP 0.8462 0.8133 0.6298 10.4975
GMP + GVP 0.8712 0.8463 0.6696 10.2588

GVP 0.8821 0.8624 0.6854 10.5769

E. Analysis on the number of patches K

Although PST-PCQA feature extraction architecture does
not change with respect to the number of patches K, the
patch-wise MOS estimation module includes batch normal-
ization across patches. Hence, to evaluate the effect of K,
we provide the performance of PST-PCQA with respect to
diverse values of K = {2, 4, 8, 16, 32} in Table II. From the
results it is worth noting that having few patches (K = {2, 4})
impacts the performance of PST-PCQA. Comparable results
are achieved with K = {8, 16} patches whereas having
more than K = 16 yields an inefficient model both in
terms of correlation between true and predicted MOS and of
computational complexity.

TABLE II
PERFORMANCE OF DIFFERENT NUMBER OF PATCHES K ON THE WPC

DATASET.

K PLCC ↑ SRCC ↑ KRCC ↑ RMSE ↓
2 0.8075 0.7906 0.6251 13.1335
4 0.8208 0.8087 0.6235 12.5506
8 0.8772 0.8779 0.6965 10.7112
16 0.8821 0.8624 0.6854 10.5769
32 0.8438 0.8266 0.6390 11.7893

F. Results on all the datasets

We compare the results of PST-PCQA with different types
of state-of-the-art approaches:

• FR: p2pMSE [42], p2pH [42], p2planeMSE [43],
p2planeH [43], PSNRY [44]. IW-SSIM [12],
PCQM [19], MPED [23], TCDM [21].

• RR: PCMR [45] and Liu et al. [25].
• NR1: BRISQUE [14], NIQE [13], ResCNN [8], 3D-

NSS [27], PQA-Net [9], VQA-PC [32], MM-PCQA [16],
EEP-3DQA [17], BEQ-CVP [26], SGT-PCQA [5], and
Plain-PCQA [18].

Table III shows the comparison of performance between the
proposed approach and the state-of-the-art on WPC [12] and
SJTU-PCQA [38] datasets. It is worth noticing the superiority
of our approach on both datasets in mostly all the metrics
with respect to NR models, indicating a strong correlation with
MOS. Precisely, our approach outperforms other architectures
in terms of PLCC and RMSE on the WPC dataset, whereas
it surpasses the state-of-the-art on SJTU-PCQA in all the
metrics. In addition, PST-PCQA is also outperforming both

1COPP-Net [33] is not included due to incorrect training, validation, and
testing splits, yielding incomparable results.

RR and FR approaches, emphasizing its practical applicability
in scenarios where the pristine point cloud is unavailable.

Table IV depicts the results of our method with respect to
approaches in the literature on the SIAT-PCQD [39] dataset,
showing similar performance to SGT-PCQA [5]. However,
it is important to highlight the difficulty of learning-based
approaches on this dataset due to the limited number of point
cloud per distortions. In fact, best performance are obtained
with hand-crafted features [5], [26] and machine learning
regressors, such as RF. In our setup, 4 folds were unsuccessful
(PLCC ≈ 50%), whereas the others reached an average PLCC
performance of 90%. This behavior is mainly caused by the
model overfitting to the training set. To address this, designing
data augmentation techniques or semi-supervised learning
approaches in this field could further enhance performance.

To visually inspect the correlation between predicted and
true MOS, Figure 6 displays the scatter plots across the three
analyzed datasets.

G. Cross-corpus generalization

To assess the generalization capabilities of the proposed
approach, we train on a source dataset, e.g., WPC, and test to a
different dataset, e.g., SJTU-PCQA and viceversa. Table V de-
picts the results of PST-PCQA with respect to state-of-the-art
approaches, demonstrating its ability to model Human Vision
System (HVS) of point clouds in out-domain scenarios. In fact,
PST-PCQA achieves the highest generalization performance in
cross-dataset scenarios. For example, when trained on SJTU-
PCQA and tested on WPC, it achieves an SRCC of 0.2737
and a PLCC of 0.3797, outperforming other methods such
as VQA-PC (SRCC = 0.2733, PLCC = 0.3067). However,
the generalization scores remain relatively low, reflecting the
challenging nature of cross-corpus evaluation.

H. Ablation study

To demonstrate the effectiveness of each component of the
proposed approach, an ablation study has been carried out
and the results are depicted in Table VI. It is important to
highlight the impact of patch-wise loss L2(ŷP , yP), which
acts as a regularizer for the model. Moreover, our approach
without local weighting performs worse, with a decrease of the
performance of 4.6% in terms of PLCC, validating our con-
tribution. Finally, we evaluate the contribution of each stream,
namely TFE and SFE. The results show that the approach
based on the fusion of the features obtained from TFE a
SFE yields the best performance. However, it is worth noting
that when PST-PCQA includes only one of the two streams,
the obtained results are comparable. This demonstrates that
combining features with diverse point densities improves the
quality estimation.

I. Complexity comparison

Table VII compares the number of parameters of the pro-
posed approach with the top-3 learning-based architectures
in the literature. It is worth noting that PST-PCQA has the
lowest number of learnable parameters, demonstrating its low-
complexity nature. As stated in [46], a reduced number of
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TABLE III
EXPERIMENTAL RESULTS ON WPC AND SJTU-PCQA. BOLD AND UNDERLINE NOTATIONS HAVE BEEN USED FOR HIGHLIGHTING THE BEST AND

SECOND PERFORMANCE, RESPECTIVELY. (−) MEANS NO DATA IS AVAILABLE.

WPC [12] SJTU-PCQA [38]
PLCC ↑ SRCC ↑ KRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ KRCC ↑ RMSE ↓

FR

p2pMSE [42] 0.4853 0.4559 0.3182 19.8943 0.8228 0.7294 0.5617 1.3290
p2pH [42] 0.3972 0.2786 0.1944 20.8993 0.8005 0.7159 0.5450 1.3634

p2planeMSE [43] 0.2440 0.3282 0.2250 22.8226 0.6697 0.6278 0.4825 1.6961
p2planeH [43] 0.3842 0.2959 0.2071 21.0416 0.7779 0.6952 0.5302 1.4372
PSNRY [44] 0.6166 0.5823 0.4164 17.9001 0.8124 0.7871 0.6116 1.3224
IW-SSIM [12] 0.8504 0.8481 − 12.0600 0.7949 0.7833 − 1.4224

PCQM [19] 0.6162 0.5504 0.4409 17.9027 0.8600 0.8470 − 1.2370
MPED [23] 0.7000 0.6780 − 16.3740 0.8221 0.7436 0.5799 1.2866
TCDM [21] 0.8070 0.8040 − 13.5250 0.9300 0.9100 − 0.8910

RR PCMR [45] 0.3926 0.3605 0.2543 20.9203 0.6699 0.5622 0.4091 1.7589

NR

BRISQUE [14] 0.2614 0.3155 0.2088 21.1730 0.4214 0.3975 0.2966 2.0930
NIQE [13] 0.1136 0.2225 0.0953 23.1410 0.2420 0.1379 0.1009 2.2620

ResCNN [8] 0.4531 0.4362 0.2987 20.2591 0.7821 0.7911 0.5224 1.3651
3D-NSS [27] 0.6284 0.6309 0.4573 18.1706 0.7819 0.7813 0.6023 1.7740
IT-PCQA [29] 0.7950 0.7800 − − 0.5800 0.6300 − −
PQA-Net [9] 0.6671 0.6368 0.4684 16.6758 0.8586 0.8372 0.6304 1.0719
VQA-PC [32] 0.8001 0.8012 0.6237 13.5570 0.8702 0.8611 0.6811 1.1012

MM-PCQA [16] 0.8556 0.8414 0.6513 12.3506 0.9226 0.9102 0.7838 0.7716
EEP-3DQA [17] 0.8296 0.8264 0.6422 12.7451 0.9363 0.9095 0.6811 1.1010

MOD-PCQA [11] 0.8733 0.8752 0.6952 11.0600 0.9534 0.9311 0.7939 0.7124
Plain-PCQA [18] 0.8783 0.8793 0.6951 10.8308 0.9302 0.9133 0.7603 0.8607

PST-PCQA (ours) 0.8821 0.8624 0.6854 10.5769 0.9593 0.9514 0.8049 0.6630

TABLE IV
EXPERIMENTAL RESULTS ON SIAT-PCQD. (−) MEANS NO DATA IS

AVAILABLE.

SIAT-PCQD [39]
PLCC ↑ SRCC ↑ KRCC ↑ RMSE ↓

FR

p2pMSE [42] 0.3136 0.3963 0.2761 0.1224
p2pH [42] 0.2980 0.3791 0.2620 0.1231

p2planeMSE [43] 0.3498 0.4125 0.2947 0.1208
p2planeH [43] 0.3218 0.3862 0.2679 0.1221
PSNRY [44] 0.3443 0.3481 0.2318 0.1211
IW-SSIM [12] 0.8181 0.6966 0.5183 0.0742

PCQM [19] 0.6539 0.6666 0.4825 0.0994

RR PCMR [45] 0.3851 0.3940 − −
Liu et al. [25] 0.9133 0.9095 − −

NR

3D-NSS [27] 0.5550 0.5310 − −
IT-PCQA [29] 0.7870 0.7920 − −
SGT-PCQA [5] 0.8480 0.7950 − −
BEQ-CVP [26] 0.7230 0.6490 − −

PST-PCQA (ours) 0.8304 0.7931 0.5785 0.0183

TABLE V
CROSS-CORPUS GENERALIZATION ANALYSIS.

WPC → SJTU SJTU → WPC
SRCC ↑ PLCC ↑ SRCC ↑ PLCC ↑

3D-NSS [27] 0.2117 0.2034 0.1214 0.1313
PQA-Net [9] 0.5411 0.6102 0.2211 0.2334
ResCNN [8] 0.5012 0.4954 0.2301 0.2293

VQA-PC [32] 0.5866 0.6525 0.2733 0.3067
PST-PCQA 0.7413 0.7522 0.2737 0.3797

trainable parameters can reduce the likelihood of overfitting,
which is particularly beneficial for small datasets. Further-
more, models with fewer parameters demand less compu-
tational power and time during both the optimization and
inference phase due to the decreased quantity of parameters.

According to 3GPP [47] specification for Extended Real-

TABLE VI
ABLATION STUDY ON THE WPC DATASET [12].

PLCC ↑ SRCC ↑ KRCC ↑ RMSE ↓
No L2(ŷP , yP ) 0.7773 0.6990 0.5119 13.6713

No LBE 0.8358 0.8587 0.6667 12.1790
No TFE 0.8642 0.8639 0.6783 11.4367
No SFE 0.8751 0.8637 0.6836 10.7429

PST-PCQA 0.8821 0.8624 0.6854 10.5769

ity (XR) applications, a system processing and broadcasting
multimedia content is real-time if the delay is around or lower
than 200 ms. In our setup, PST-PCQA runs on a NVIDIA RTX
4070, which is a commercial-off-the-shelf GPU for gaming,
with an average inference time of 70 ms per point cloud.

TABLE VII
COMPLEXITY COMPARISON WITH STATE-OF-THE-ART.

Approach MM-PCQA [16] Plain-PCQA [18] EEP-3DQA [17] PST-PCQA
# Params (M) 58.37 28.50 27.54 1.80

V. CONCLUSIONS

In this work we propose a novel low-complexity learning-
based NR PCQA, namely PST-PCQA, which analyzes the
input point cloud in patches. Our approach combines both
local and global features to provide a prediction of the
point cloud MOS. Extensive experimental results on 3 widely
adopted datasets in the state-of-the-art show the effectiveness
of PST-PCQA, providing design rationales on feature pooling,
cross-corpus generalization capabilities. The ablation study
demonstrates that a patch-wise analysis can enhance the per-
formance of PST-PCQA. Furthemore, the reduced number of
learnable parameters of PST-PCQA enables its use in real-
time and computation-constrained hardware. A possible future
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investigation can concern the in-depth analysis of the impact of
geometry- and texture-based distortions on the predicted MOS.
Moreover, as a future work, adaptive 1D kernel convolutions,
similarly to their 2D counterpart in [41], i.e., changing kernel
values with respect to the content, could be included to
improve the generalization ability of PST-PCQA.
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