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Abstract—Distance estimation from audio plays a crucial role
in various applications, such as acoustic scene analysis, sound
source localization, and room modeling. Most studies predomi-
nantly center on employing a classification approach, where dis-
tances are discretized into distinct categories, enabling smoother
model training and achieving higher accuracy but imposing re-
strictions on the precision of the obtained sound source position.
Towards this direction, in this paper we propose a novel approach
for continuous distance estimation from audio signals using a
convolutional recurrent neural network with an attention module.
The attention mechanism enables the model to focus on relevant
temporal and spectral features, enhancing its ability to capture
fine-grained distance-related information. To evaluate the effec-
tiveness of our proposed method, we conduct extensive experiments
using audio recordings in controlled environments with three levels
of realism (synthetic room impulse response, measured response
with convolved speech, and real recordings) on four datasets (our
synthetic dataset, QMULTIMIT, VoiceHome-2, and STARSS23).
Experimental results show that the model achieves an absolute
error of 0.11 meters in a noiseless synthetic scenario. Moreover, the
results showed an absolute error of about 1.30 meters in the hybrid
scenario. The algorithm’s performance in the real scenario, where
unpredictable environmental factors and noise are prevalent, yields
an absolute error of approximately 0.50 meters.

Index Terms—Distance estimation, single-channel, deep
learning, reverberation, explainability, attention.

I. INTRODUCTION

SOURCE distance estimation (SDE) refers to the task of
estimating the interspace between a microphone and a

sound source. It is very often performed in conjunction with
direction of arrival (DoA) estimation, in which only the direction
information about the source position is obtained. Both tasks
are useful in many practical applications, including increasing
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the robustness of automatic speech recognition [1] by enhancing
the performance of acoustic echo cancellers [2] and autonomous
robotics [3], [4]. Despite both DoA and source distance being
estimated using multi-channel audio in most practical scenarios,
the latter has been largely under-researched [5]. Firstly, source
distance estimation is widely regarded a more difficult task due
to distance cues vanishing with the increased space between
the sound source and the receiver. Secondly, DoA offers suf-
ficient information in many downstream spatial filtering tasks.
However, many applications such as source separation, acoustic
monitoring, and context-aware devices, would still benefit from
full information about the sound source position, hence the need
for further investigations on source distance estimation (SDE).

Most methods for both DOA and distance estimation rely
on arrays with more than two microphones [6]. Multichannel
data allows for exploiting spatial cues such as interchannel time
differences (ITDs) and interchannel level differences (ILDs)
to provide information for efficient DoA estimation, positively
affecting distance estimation as well [4]. However, using mul-
tiple microphones poses certain limitations in terms of budget
and physical portability. To tackle this problem, some studies
investigated using binaural recordings for that purpose, allowing
for decreasing the number of channels to two by exploiting the
human hearing cues [7], [8]. However, the simplest scenario of
estimating distance from a single microphone has been largely
under-researched [9]. Moreover, the vast majority of studies
focus on a classification approach, in which the distance is dis-
cretized into a set of disjunctive categories, e.g., “far” and “near”,
allowing for easier model training and a higher accuracy [10],
[11]. However, using pre-defined categories does not allow for
continuous estimation, which puts limits on the precision of the
obtained sound source position.

Towards this direction, in this work, we propose several novel
solutions to tackle the problem of source distance estimation.
Firstly, we define the task as a regression problem, differently
from most state-of-the-art works that focus on classification-
based methods. We propose a novel approach to distance es-
timation from single-channel audio signals in reverberant envi-
ronments, overcoming the need for complex microphone arrays.
In more detail, the proposed model is a convolutional recurrent
neural network (CRNN) with an attention module, which is re-
sponsible for learning a time-frequency attention map. By doing
so, it is possible to emphasize magnitude- and phase-related
features that are the most informative for sound source distance
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estimation. The effectiveness of our approach is extensively
tested for numerous acoustic scenarios, obtained by simulations
with randomized configurations of room shapes, materials, and
locations of the microphone and the speaker. In addition, tests
have been carried out on real reverberant speech recordings,
captured directly or emulated with real room impulse responses
(RIRs).

The remainder of the manuscript is organized as follows.
Section II provides a summary of the state-of-the-art. Section III
describes the proposed methods, whereas the performance eval-
uations are in Section IV. Section V details the experimental
results of the proposed approach on three acoustic scenarios.
Finally, Section VI includes an overall discussion regarding the
work, and Section VII draws the conclusions.

II. RELATED WORKS

SDE involves determining the distance between a sound
source and the receiver. When compared to DoA estimation,
SDE is an area that has received significantly less attention
and is generally considered more challenging. This is primarily
due to the fact that the accuracy of distance estimation declines
rapidly for small-sized arrays commonly used in practice even
for relatively short distances from the center of the array (up to 3-
4 m). Several factors contribute to this phenomenon, including:
a) the decrease in direct-to-reverberant energy ratio (DRR) and
signal-to-noise ratios (SNRs) as the source distance increases,
b) the reduction in inter-channel level differences and constant
inter-channel time differences as the source transitions from a
spherical wave to a plane wave captured by the array.

The majority of studies related to SDE show results in con-
junction with the DoA estimation task. Extensive research has
been conducted on this subject for various acoustic systems that
commonly use distributed microphone arrays. These systems en-
compass a range of setups, such as intelligent loudspeakers [12],
spherical microphones [13], triangular configurations [14], and
arrays of acoustic sensors [15]. Simpler audio formats including
binaural recordings have been investigated to a much lesser
extent, including few studies with classical machine learning
methods [4], [16] and very limited research related to deep
learning [7], [8].

Regarding SDE modeling in isolation, most of the research
has been focused on parametric approaches and manually crafted
features. These methods often utilize information such as the
DRR [17], RIR [18], or signal statistics and binaural cues such
as the interchannel intensity difference (IID) [4]. In some cases,
classical machine learning techniques have been employed to
leverage statistical features. For instance, a study by Brendel
et al. estimated the coherent-to-diffuse power ratio to determine
the source-microphone distance via Gaussian mixture models
(GMMs) [5]. Vesa utilized GMMs trained with magnitude
squared coherence (MSC) features to incorporate information
about channel correlation [19], [20]. In [21], the authors used
MSC on top of other features to train classifiers with methods
such as K-nearest neighbours (KNN) or linear discriminative
analysis (LDA). Georganti et al. introduced the binaural sig-
nal magnitude difference standard deviation (BSMD-STD) and

trained GMMs and support vector machines (SVMs) using this
feature [10]. Most of these methods rely on compound algo-
rithms that require careful tuning to adapt to varying acoustic
conditions.

Until now, the exploration of source distance estimation using
deep neural networks (DNNs) has been quite limited. Yiwere
et al. employed an approach inspired by image classification,
utilizing CRNNs trained on log-mel spectrograms to classify
three different distances in three distinct rooms [22]. Although
the models demonstrated promising outcomes for data within the
same environment, their performance significantly deteriorated
when dealing with recordings from different rooms. In another
endeavor, Sobhdel et al. introduced relation networks to address
this challenge through few-shot learning, which exhibited en-
hancements over conventional convolutional neural networks
(CNNs) [23]. Both studies conducted tests within a limited range
of specific distances, encompassing a close proximity of up to
3-4 meters at most. In [8], the authors conducted experiments
for data covering distances for up to 8 m, however the model
was classifying them into two binary classes denoted as “far”
and “near”.

Additionally, only a few works have addressed the topic of
speaker distance estimation using single-channel audio. One
of the first works employed low-level features such as linear
predictive coding (LPC), skewness, and kurtosis of the spectrum
to classify the distance of a speaker [11]. Venkatesan et al.
proposed both monaural and binaural features to train GMMs
and SVMs [24]. Regarding DNN approaches, Patterson et al.
classified “far” and “near” speech in order to perform sound
source separation from single-channel audios [9].

To the best of our knowledge, single-channel source distance
estimation has been scarcely addressed as a regression problem,
prioritizing classification approaches to ease model training.
In addition, there are very few studies investigating the use of
DNNs in this task. For these reasons, a learning-based approach
for continuous estimation of the distance of the speaker is
proposed. A first step towards continuous sound source dis-
tance estimation occurs in our preliminary study [25] where
a CRNN was defined for estimating static speaker distance
in simulated reverberant environments from a single omnidi-
rectional microphone. However, that study was evaluated only
on simulations, while in this work various degrees of realism
are investigated, from simulated RIRs, to synthetic data with
measured RIRs, to fully real recordings with distance-annotated
sources. Hence, the potential of the method in a real-world
scenario is demonstrated. In addition, the preliminary study was
based on a simpler architecture without investigation on what
architectural components contributed the most to the SDE, while
here the architecture is refined and enhanced, with better overall
performance, and specific choices investigated in an ablation
study.

To cope with these limitations, the contributions of this work
are as follows
� a major improvement of the results of the learning-based

approach, i.e., a CRNN, proposed in our preliminary
study [25] that simultaneously provides temporal frame-
wise and utterance-wise distance estimation of the static
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Fig. 1. Proposed architecture for speaker distance estimation. First, acoustic features are extracted from the single-channel audio. In more detail, 3 maps (magnitude
of the short-time Fourier transform (STFT), sinus, and cosinus of the STFT phase) are obtained with shape T × F , where T and F are the time and frequency
bins, respectively. Then, the maps are stacked along the channel dimension resulting in a feature tensor of size T × F × 3. To highlight the feature regions that are
most informative for distance estimation, an attention map is learned from the three-channel tensor, which is then element-wise multiplied with the input feature
tensor. The output is further processed by the convolutional layers with Pi 1× 3 kernels, also denoted as frequency kernels, yielding a T × 2× P tensor that is
arranged in a T ×Q matrix, where Q = 2P . Subsequently, the resulting matrix is analyzed by two gated recurrent unit (GRU) layers with Q neurons to model
temporal patterns. Finally, the output from recurrent layers T ×Q is fed to three fully connected layers with R, 1, and 1 neurons respectively to map the features
to the predicted distance ŷ.

audio source. In addition, an in-depth study regarding the
model architecture is detailed;

� definition of an attention module that estimates the most
significant time-frequency patterns from the input features
for speaker distance estimation;

� experiments have been conducted on synthetic data, both
in noiseless and noisy scenarios, to analyze the response of
the proposed approach in controlled environments. Further
tests on the CRNN have been conducted on a constructed
hybrid dataset, i.e., measured RIRs convolved with ane-
choic speeches, and two real recording datasets, demon-
strating the generalization capabilities of the proposed
approach.

III. PROPOSED METHOD

In this section, a description of the acoustic features for the
source distance estimation is provided. To process temporal,
spatial, and spectral characteristics of these features, a CRNN
has been employed for the experiments. This type of model
has shown good results in many studies for sound event local-
ization and detection (SELD) tasks [26], [27]. In addition, an
attention module is introduced to learn an attention map on the
time-frequency audio representation. The overall architecture is
depicted in Fig. 1.

A. Acoustic Features Extraction

All the operations on the audio files are performed at 16 kHz.
The selection of this sampling frequency is because the speech
spectrum is mostly contained in the range 0-8 kHz [28]. In

addition, a lower frequency yields a lower number of sam-
ples, reducing the computational complexity of feature extrac-
tion and distance estimation. Initially, a pre-processing stage
is employed to extract the complex STFT STFT{x} ∈ CT×F

from the single-channel audio signal x ∈ R1×L, where T is
the number of time frames, F the number of frequency bins,
and L the number of samples. This transformation is computed
using a Hann window of length 32 ms with 50% overlap.
Subsequently, the magnitude (|STFT{x}| ∈ RT×F ) and phase
(∠STFT{x} ∈ RT×F ) components of the STFT are computed
from the complex matrix.

Sinus and cosinus maps of the phase spectrogram are com-
puted by applying sin(·) and cos(·) functions element-wise,
since the features provide a smoother continuous representation
of the raw phase information. The concept of utilizing the phase
spectrogram has been adopted from contemporary research on
multichannel source separation [29], learning-based localiza-
tion [30], and speech enhancement [31] as phase information
contains cues regarding the acoustic properties of the environ-
ment in which the sound propagates [32]. Tests conducted using
the raw complex spectrogram in our scenario, i.e., two sepa-
rate branches that processed real and imaginary parts, yielded
unsatisfactory training performance.

Finally, the magnitude of the STFT and the sinus and cosinus
maps are stacked into a T × F × 3 tensor. This representation is
then fed into the attention module and the convolutional layers
for further processing and analysis.

B. Attention Module

One of the main contributions of this work is the definition
of an attention module which computes an attention map H ∈
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Fig. 2. Example of spectrogram and attention map on a noiseless sample of the synthetic dataset with a speaker talking at 10 meters.

Fig. 3. Example of spectrogram and attention map on a noisy sample (SNR = 0 dB) of the synthetic dataset with a speaker talking at 10 meters.

R+T×F×3 from the audio features. The objective of this learned
matrix is to emphasize the regions of the features that are most
informative for the estimation of the distance. Specifically, this
module is the function fATT : RT×F×3 → R+T×F×3

. Its structure
is composed of 2 convolutional blocks, having 16 and 64 3×
3 filters, respectively. Then, a 1× 1 convolutional layer with
three filters, followed by a sigmoid activation, is used to map the
features to yield theT × F × 3 attention map. Finally, the output
acoustic features X̃ ∈ RT×F×3 are obtained by element-wise
multiplication (⊗) between the input acoustic features and the
attention map as

X̃ = fATT(X)⊗X. (1)

Examples of noiseless and noisy spectrograms and attention
maps are depicted in Figs. 2 and in 3, respectively. It is worth
highlighting how the attention module differently focuses on
the parts of the signal where the speech is most likely to stand
out from the noise, or where the characteristics of the speech are
still recognizable. In fact, the attention map in a noiseless case is
evenly distributed across the entire frequency range since there
is no noise that interferes.

C. Convolutional Layers

The architecture employs three convolutional blocks for fea-
ture extraction. In more detail, the structure of each block in-
volves a 2D convolutional layer comprising Pi 1× 3 filters, i.e.,
along the frequency axis with values of 8, 32, and 128 assigned to
the respective layers. We denote these filters as frequency kernels
whereas 3× 1 filters are named time kernels. Square kernels,
known for their capability to capture time-frequency patterns,
are commonly used in convolutional layers applied to spectro-
grams due to their effectiveness in capturing local patterns and
structures along the frequency axis. In this work, the proposed
model adopts rectangular filters, and temporal information is

modeled by recurrent layers at the end of the model. In fact,
rectangular filters can be more parameter-efficient compared
to square kernels. Since the former has fewer parameters than
square kernels of the same receptive field size, they can lead
to a more compact model, making training and inference more
computationally efficient and potentially reducing the risk of
overfitting, especially when working with limited data.

Following this layer, a batch normalization [33] step is ap-
plied, along with max and average pooling operations along the
frequency dimension. Then, the results of which are summed.

The activation function utilized after each convolutional layer
is the exponential linear unit (ELU) [34], which is denoted as

ELU(x) =

{
x, x ≥ 0

α(ex − 1), x < 0
(2)

whereα is a coefficient that regularizes the saturation of negative
values. Notably, each layer employs a specific pooling rate
denoted by MPi, with values of 8, 8, and 2 assigned to the
respective layers.

D. Recurrent Layers

To process the feature maps from the convolutional layers, two
bi-directional GRU layers are utilized with tanh(·) as the acti-
vation function. These layers have exhibited promising results
in audio and speech processing tasks, demonstrating parameter
efficiency compared to long short-term memory (LSTM) net-
works [35].

The output of the CNN with shapeT × 2× P is stacked along
the channel dimension to produce a T ×Q matrix to be fed to
the recurrent layers. Then, in the proposed configuration, the
extraction of reverberation-related information primarily relies
on integrating information over time with the recurrent layers.
Within this implementation, two bi-directional GRUs with Q =
2P = 128 neurons each for every time frame are employed.
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Then, to predict the distance, three fully connected layers are
employed, where an independent mapping between each time
frame is performed in each layer. Firstly, the initial linear layer
projects time-wise features from the last GRU onto a matrix of
dimensions T ×R, where R = 128. Subsequently, the second
linear layer independently maps each time frame of the T ×R
matrix onto a vector of size T × 1, denoted as the time-wise
distance estimation ŷ. Specifically, this vector represents the
distance estimation for each time frame. Finally, the last fully
connected layer is employed to perform regression and thus
estimate the predicted distance, denoted as ŷ ∈ R.

E. Loss Function

The mean squared error (MSE) loss is used to train the DNN
system. Let y ∈ R be the true distance of a static sound source.
In addition, lety ∈ RT×1 be the vector consisting of frame-wise
ground truth distances. Then, the loss used in the training phase
for a single sample is

L(y, ŷ,yt, ŷt) = (y − ŷ)2 + ||yt − ŷt||2, (3)

where the loss is averaged across the batch dimension to be
exploited by the backpropagation algorithm. Thanks to the im-
position of the loss, the model predicts a distance for each time
bin and, from this information, a single-valued distance. Having
two losses in a static source scenario operates as a regularization
term since it forces the proposed approach to return coherently
both time-wise and single-distance estimations. However, in the
context of dynamic sound sources, it is important to highlight
that only frame-wise loss is required.

F. Metrics

The performance evaluation of our approach utilizes the mean
absolute error (MAE) (L1) as the performance measure for the
entire test dataset

L1(y, ŷ) = |y − ŷ|, (4)

where the ground truth y ∈ R and the prediction ŷ ∈ R are con-
sidered. Additionally, the performance is assessed by calculating
the MAE within different distance ranges. This analysis allows
us to quantify the relative error of our model concerning source
distance. We define the relative MAE (rL1), which includes the
real speaker distance in the evaluation, as follows:

rL1(y, ŷ) =
L1(y, ŷ)

y
=

|y − ŷ|
y

. (5)

For the sake of clarity and brevity, MSE has not been considered
in the performance evaluation.

IV. PERFORMANCE ASSESSMENT

This section describes how the performance assessment of
the proposed approach has been carried out. To validate the
work, three levels of realism have been addressed in the scope
of speaker distance estimation:
� Synthetic: simulated RIRs of an image-source room simu-

lator are convolved with anechoic speech;

� Hybrid: measured RIRs are convolved with anechoic
speech;

� Real: on-field reverberant speech recordings.
Fig. 4 depicts the histograms of distances in each dataset

employed in the experimental results.

A. Synthetic Dataset

The dataset used for experiments follows the same setup as
in [36]. Briefly, anechoic speech recordings obtained from the
TIMIT dataset [37] are convolved with the simulated omnidirec-
tional RIRs from an image-source room simulator for shoebox
geometries [38].

This simulator allows for frequency-dependent wall absorp-
tion and directional encoding of image sources in 5th order
Ambisonics format. The elevation range between the source and
the receiver spanned from −35◦ to 35◦. To compile a list of
materials and their respective absorption coefficients for each
surface type (ceiling, floor, and wall), we refer to widely used
acoustical engineering tables [39]. For each unique simulated
room with its room-source-distance configuration, a random
material is assigned to each surface, resulting in 2912 possi-
ble material combinations. Compared to randomizing directly
the target RT60 for each simulated room, this randomization
approach allows us to avoid matching unnatural reverberation
times to specific room volumes (e.g., a very long RT60 for a small
room) and ensure a more natural distribution of reverberation
times.

The final distribution of reverberation times exhibits a median,
10th percentile, and 90th percentile of 0.83 s, 0.42 s, and 2.38 s,
respectively. Furthermore, the positions of the sound sources are
uniformly distributed in terms of the azimuth angle relative to
the receiver.

The experiments include 2500 audio files of 10 s duration at
16 kHz in compliance with the speech dataset. In the evaluation,
5-fold cross validation is used where 1500, 500, and 500 files
are assigned to training, validation, and testing in each fold.

To assess the performance of the proposed approach under
different noise levels, real background noise is added into the
synthetic dataset. Specifically, environmental noise recordings
from the WHAM! [40] dataset, captured in various urban set-
tings such as restaurants, cafes, and bars, are employed. Random
segments of the same length as the simulated speech recordings
are injected, mirroring the same split as the WHAM! dataset,
with several SNRs levels ([50, 40, 30, 20, 10, 5, 0] dB).

In addition to estimating the mean absolute distance esti-
mation error, the errors are calculated separately for separate
distance intervals that are {[1, 2), [2, 4), [4, 8), [8, 14)} meters.
The MAE errors are averaged using a 5-fold cross-validation
split, and the 95% mean confidence intervals are evaluated.

B. Hybrid Dataset - QMULTIMIT

The RIRs used in the hybrid dataset, contained in the C4DM
RIR database [41], were measured in three rooms located at
Queen Mary, University of London, London, U.K.. A Genelec
8250 A loudspeaker was employed as the source for measuring
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Fig. 4. Distributions of distances in each dataset.

all IRs, while each receiver position was measured using both an
omnidirectional DPA 4006 and a B-format Soundfield SPS422B.

A collection of 130 RIRs was captured in a classroom with
dimensions 7.5× 9× 3.5 m (236 m3) and consist of reflective
surfaces such as a linoleum floor, painted plaster walls, ceiling,
and a sizable whiteboard.

The second room, denoted as the Octagon, is a Victorian
structure that was finalized in 1888. Presently serving as a
conference venue, the walls of this building still showcase book-
lined interiors, complemented by a wooden floor and plaster
ceiling. As the name implies, this room features eight walls,
each measuring 7.5 m in length, and a domed ceiling towering
21 m above the floor, resulting in an estimated volume of 9500
m3. In the center of the room, a total of 169 RIRs were measured.

The third room is The Great Hall which possesses a seating
capacity of approximately 800. It encompasses a stage and
seating sections both on the floor and a balcony. To capture
the audio, the microphones were positioned within the cleared
seating area on the floor, spanning an area of approximately
23× 16 m. The microphone placements mirror the layout used
for the Octagon, encompassing 169 RIRs over a 12× 12 m
region.

Following the same setup of the synthetic dataset, anechoic
speech recordings are convolved from TIMIT [37] and real

background noises from WHAM! [40] are added with the mea-
sured RIRs, generating the hybrid QMULTIMIT dataset. For
each RIR, 5 random speech recordings are selected from the
TIMIT dataset, yielding 2340 audio files. RIRs are randomly
divided into training, validation, and testing splits following a
percentage ratio of 70-10-20. Finally, the MAE errors averaged
across all the distance bins are provided.

C. Real Dataset
� VoiceHome - 2 [42]: This dataset is specifically made

for distant speech processing applications in domestic
environments. It consists of short commands for smart
home devices in French, collected in reverberant condi-
tions and uttered by twelve native French speakers facing
the microphone. The data is recorded in twelve different
rooms corresponding to four houses, with fully annotated
geometry, under quiet or noisy conditions. More precisely,
VoiceHome - 2 includes everyday noise sources (with no
annotations regarding their SNRs) such as competing talk-
ers, TV/radio, footsteps, doors, kitchenware, and electrical
appliances. Five speaker positions per room, comprising
standing and sitting postures, are selected to encompass
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a broad range of angles and distances concerning the mi-
crophone array, which maintains a single, fixed position
throughout all the room recordings. The sound is then
captured by a microphone array consisting of eight micro-
electromechanical systems (MEMS) placed near the corner
of a cubic baffle. For this study, only the first channel has
been extracted. In total, VoiceHome - 2 encompasses 752
audio recordings, lasting approximately 10 seconds for all
the twelve rooms and the five noise scenes. The dataset is
then randomly split using a percentage ratio of 70-10-20
training, validation, and testing splits, respectively, for the
experiments.

� STARSS22 [43]: The dataset includes recordings of human
interaction scenes with spatio-temporal event annotations
for thirteen target classes, primarily focusing on speech.
It is part of the DCASE Challenge 2022 Task 3 develop-
ment set. The recordings were made at two sites, Tampere
University in Finland and Sony headquarters in Japan, in
a total of eleven rooms maintaining a consistent organi-
zation and procedure regarding equipment, recording, and
annotations. The dataset utilizes the Eigenmike spherical
microphone array, offering two spatial formats. One format
involves a tetrahedral sub-array of omnidirectional micro-
phones mounted on a rigid spherical baffle. The corpus is
more challenging compared to the other datasets due to
the natural movement and orientation of multiple speakers
during discussions, as well as the presence of intentional
and unintentional sound events other than speech. It also
contains diffuse and directional ambient noise at significant
levels. Finally, audio data from a single microphone of
the Eigenmike array has been processed, extracting 2934
two-second single-speech excerpts that do not overlap with
other annotated directional sources. As done before with
the other datasets, STARSS22 is split using a percentage
ratio of 70-10-20 training, validation, and testing splits,
respectively.

It is worth noticing that, as can be inspected in Fig. 4, real
dataset distances are differently distributed with respect to the
synthetic and hybrid ones. The motivations of this behavior are
as follows:
� in many real-world scenarios, as in STARSS23 [44], sound

sources are not always at a fixed distance from the recording
device;

� different recording environments can introduce variations
in the speaker distance distribution. For example, in a
controlled studio setting, speakers may be positioned at
specific distances from the microphone to achieve de-
sired sound characteristics. In contrast, field recordings
or recordings made in everyday settings can have a wider
range of distances due to the uncontrollable nature of the
environment. Indeed, in this context, VoiceHome-2 [42]
has been recorded in a domestic environment whereas
STARSS23 [43] has been collected in office-like environ-
ments;

� audio datasets are often curated to suit specific applications
or scenarios. For instance, a dataset focused on speaker
recognition in far-field scenarios may deliberately include

more examples with distant speakers to simulate real-
world challenges. On the other hand, a dataset for speech
enhancement in close-proximity situations may prioritize
examples with close speaker distances. VoiceHome - 2 has
been curately designed for enhancing distant-microphone
speech whereas STARSS23 focuses on SELD, yielding
dissimilar distance distributions.

Accordingly with the distributions of distances in real
scenarios, the distance bins used are {[1, 2), [2, 3), [3, 4.5)}
and {[1, 2), [2, 2.5), [2.5, 3)} meters for VoiceHome - 2 and
STARSS22, respectively. The final MAE errors are averaged
using a percentage ratio of 70-10-20 training, validation, and
testing splits, respectively.

V. EXPERIMENTAL RESULTS

In this section, the experimental results are shown for each
realistic scenario, as detailed in Section IV. First, the proposed
architecture is tested on the synthetic dataset, both in noiseless
and noisy scenarios, for the selection of hyperparameters. Next,
the performance of the approach is evaluated on hybrid and
real recordings by comparing the selected solution with dif-
ferent hyperparameters. Finally, an ablation study is provided
to demonstrate the effectiveness of the attention module in all
scenarios.

A. Implementation Details

For both training and fine-tuning procedures on all scenarios,
the model is trained for 60 epochs at a learning rate of 0.001
with batch size of 16 samples. A scheduled reduction (80%) of
the learning rate is performed every 5 epochs when the MSE
of the validation set does not improve. In this work, fine-tuning
is carried out by training again the model, hence without the
random initialization of the weights.

B. Results on Noiseless Synthetic Data

The proposed approach efficiently estimates speaker distance
with an average error of 11 cm in a noiseless scenario, as it can be
inspected from Table I. Since there is no other published method
that attempts regression-based SDE with a single microphone,
for comparison purposes we present results on binaural SDE
following the recently published work of [45]. The binaural es-
timation model is similar to the CRNN model used herein; how-
ever, we modify it to include the attention operation proposed in
this work for better comparison purposes. A similar simulator,
range of acoustic conditions, and number of rooms was used
in [45] as herein. The same spectrogram and binaural features
are also used as in the original work. The binaural estimation
results (86 cm) we obtain are, on average, better than the ones
in [45] (151 cm), with the improvement most likely attributed
to the use of the attention layers. However, the most striking
difference is that of the monophonic omnidirectional results
(11 cm) versus the binaural ones (86 cm). It seems that the com-
plex frequency-, direction-, and orientation-dependent effects
imposed by head-related transfer functions (HRTFs) make it
harder for the model to associate spectrotemporal reverberation
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TABLE I
HYPERPARAMETERS SELECTION ON THE SYNTHETIC DATASET WITH CLEAN SPEECH

Fig. 5. Relation between DRR and L1.

patterns with the source distance. However, a definite conclusion
on differences between single-channel omnidirectional versus
binaural SDE requires further study.

An increasing trend of the errors with respect to the distance is
notable. This behavior is expected due to the dominant influence
of the late reverberant component compared to the direct and
early reflection components of the signal at long distances. These
late reverberation cues exhibit statistical diffusion [46], meaning
that short-term magnitudes and phases resemble noise-like char-
acteristics. Consequently, extracting meaningful information
from these dominant late reverberation cues may pose challenges
for the model in effectively estimating speaker distance.

Such behaviour is demonstrated in Fig. 5. Considering that
the balance between direct speech energy versus early and late
reverberant energy is exemplified in the DRR, measured from the
simulated RIRs, it is clear that dominance of the reverberation at
low DRRs impacts negatively distance estimation. There seems
to be an optimum balance where both direct sound and rever-
beration contribute to estimation, after which direct sound can
start to mask reverberation-related cues for higher DRRs, with a
subsequent small drop in performance. A closer investigation of
distance estimation at very high DRRs or very small distances
at the near-field of the microphone is left for future work.

Moreover, the results of the study demonstrate that the GRU
layers play a crucial role in the model’s performance. The
GRU layers likely contribute to the model’s ability to capture

TABLE II
EXPERIMENTAL RESULTS ON NOISY SYNTHETIC DATA WITH FIXED SNR AND

FREQUENCY KERNELS

sequential patterns and dependencies effectively. Additionally,
the study found that using rectangular kernels, as opposed to
square kernels, in combination with GRU layers improves the
model’s efficiency. In this scenario, the rectangular kernels are
better at capturing different types of patterns and features in
the data, leading to more effective and efficient information
processing within the model. This statement, however, does not
hold when no GRU layers are present.

In addition, it is worth noting that using a single GRU layer
slightly impacts the overall performance of the proposed ap-
proach, approximately halving the number of learnable param-
eters.

C. Analysis of the Impact of Noise on Synthetic Data

To assess the quality of the predictions in relation to noise
strength, seven SNR values have been specifically chosen during
training. More precisely, a separate model is trained from scratch
for each SNR level. Table II depicts the results where a notable
discrepancy between the noiseless and noisy scenarios becomes
evident. This divergence is primarily attributed to the disruptive
influence of background noise on the phase information [25],
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Fig. 6. Comparison between noisy and noiseless performance of the proposed
approach on the synthetic dataset.

which has been also demonstrated in speech enhancement stud-
ies [47]. It is worth noting from Fig. 6 that the performance of
the proposed method remains consistent across all SNR levels
for distances up to 6 meters.

However, beyond this distance, the error increases rapidly.
This behavior can be attributed to the quadratic inverse relation-
ship between distance and sound intensity, i.e., Is ∝ 1

d2 . Due to
this physical behavior, the direct sound and early distinct echoes
exhibit similar energy levels compared to the late reverberant
cues, hindering long-distance information.

D. Results on Hybrid Data

As done with the synthetic dataset, five SNR values have been
selected to assess the performance of the proposed architecture
by training a separate model from scratch for each SNR level.
Table III shows the experimental results, highlighting the supe-
riority of the chosen configuration. The notation [30,+∞) dB
denotes the results of the model both in noiseless case and with
at most 30 dB of SNR. It is worth noting that, differently from
the synthetic scenario, the impact of background noise is smaller
even at low SNR. In fact, comparing Table II with Table III, it is
evident how synthetic RIRs are more affected by noise at higher
SNR with respect to measured ones.

Interestingly, the use of only sinus and cosinus maps yields
poor performance at all SNRs levels whereas the STFT magni-
tude is essential for the task. This result agrees with the previous
study [25] where the use of only sinus and cosinus features in
noisy audio recordings is ineffective.

E. Results on Real Data

Tables IV and V depict the results on VoiceHome - 2 [42]
and STARSS23 [43], respectively. Following the same rationale
of the synthetic and hybrid scenarios, the selected configuration
outperforms the other models. The results obtained from the
analysis of real data demonstrate the clear superiority of the
proposed model in accurately estimating distances. Across both
datasets, the proposed model consistently outperforms different
configurations of the models, showcasing its robustness and
effectiveness. However, it is worth noting that a few outliers
surfaced in the results, particularly within the VoiceHome - 2
dataset where large confidence intervals are present. This occur-
rence can be attributed to the limited size of the datasets as the

TABLE III
DISTANCE ESTIMATION ERRORS FOR THE QMULTIMIT HYBRID DATASET.

GRAY ROW HIGHLIGHTS THE PROPOSED APPROACH

model overfits the training dataset. With a larger dataset, these
outliers are expected to be mitigated, and the model’s perfor-
mance is likely to become even more reliable and precise. This
observation underscores the potential for further advancement in
distance estimation when working with more extensive datasets.

F. Ablation Study of the Attention Module

To demonstrate the effectiveness of the attention module,
an ablation study is performed on all the scenarios. First, per-
formance assessment is carried out without the module. Then,
instead of returning aT × F × 3matrix, a spectrogram attention
map, i.e., T × F , is learned by a module. Then, an element-wise
multiplication is performed between the magnitude of the STFT
and the attention map.
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TABLE IV
DISTANCE ESTIMATION ERRORS FOR THE VOICEHOME - 2 DATASET

TABLE V
DISTANCE ESTIMATION ERRORS FOR THE STARSS23 DATASET

TABLE VI
ABLATION STUDY OF ATTENTION MAP USING FREQUENCY KERNELS ON SYNTHETIC DATA WITH CLEAN SPEECH

TABLE VII
ABLATION STUDY OF ATTENTION MAP USING FREQUENCY KERNELS ON

HYBRID AND REAL DATA

These three modalities are analyzed in Table VI, depicting
the errors for each bin with their confidence intervals. Predict-
ing an attention map for each feature provides better distance
estimation on average. Moreover, the results demonstrate that
all the approaches perform similarly in the short range, up to
8 meters. Conversely, applying the attention map on each of
the feature maps in the feature set produces better outcomes in
the long range with respect to the other two cases. When the
speaker is far from the microphone, the learned attention maps
enhance the features set, facilitating the extraction of features
of the convolutional layers. Indeed, as the distance between the
speaker and the microphone increases, detecting these patterns
becomes more challenging due to their reduced salience [46].

Moreover, an ablation study has been carried out also on the
hybrid and real data, as it can be inspected in Table VII. The
attention map yields the best performance in the hybrid case

TABLE VIII
CROSS-DATASET GENERALIZATION TESTS WITHOUT FINETUNING

when it is only applied to the STFT magnitude channel. This fact
highlights the ineffectiveness of phase features in this specific
use case. Instead, the results demonstrate the superiority of the
attention map applied on all the channels in the real scenario.

G. Cross-Corpus Generalization

Tests have been carried out in a cross-corpus training-
testing setup, e.g., synthetic-hybrid, synthetic-real, hybrid-real,
VoiceHome-STARSS. The model yields very large errors in case
no finetuning is performed, as it can be inspected in Table VIII.
This behavior highlights the discrepancy of feature patterns
among different acoustic scenarios, levels of acoustical realism,
and different distance distributions. If the model is fine-tuned to
a different realistic scenario, the performance is slightly worse
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TABLE IX
CROSS-DATASET GENERALIZATION TESTS WITH FINETUNING

that the case when the model starts with random weights. The
results of this situation is shown in Table IX.

VI. DISCUSSION

From the results of the noisy scenario in the synthetic dataset,
it is important to highlight that even a minimal amount of
noise severely corrupts phase-based features, which have been
identified as the most critical information in our analysis of
clean speech. For instance, the presence of direct sound and
echo patterns, characterized by transients in the clean signal,
becomes blurred over time due to the presence of noise and
late reverberation, resulting in a loss of phase coherence across
frequencies. This behavior, however, does not occur in the hybrid
dataset where the effect of high SNR in the recordings does
not correspond to a similar increase in estimation performance.
That may be due to the recordings of the RIRs having a level
of inherent measurement noise, which limits the effective SNR
that we can achieve in the hybrid simulations.

The imposition of the loss in (3) is required for predicting
a time-wise distance vector. Due to the lack of baselines and
datasets in the literature, only a single value of distance of the
sound source is assigned for each time bin to ease the distance
tracking task. Generally, this characteristic in audio datasets is
referred as weak labels [48]. Without time-wise distance refer-
ences, denoted as strong labels, the model encounters challenges
in fine-tuning its predictions, decreasing its overall performance.
This scenario has been studied in literature for tasks that require
a fine temporal resolution output, such as sound event detection
(SED) [49] and SELD [50].

Furthermore, it is important to acknowledge that certain por-
tions of the audio data encompass segments where speech in-
formation is absent or indiscernible. Consequently, this scarcity
of informative speech content can considerably undermine the
effectiveness and reliability of the predictors.

In this direction, the proposed attention module can improve
the ability of the model (Table VII) to identify the speech
information that is relevant for the estimation of the distance.
However, it is important to note that the attention module is
learned by the model itself, without any direct supervision.

To address these limitations, a potential avenue for improve-
ment emerges, centering around the generation of more compre-
hensive and fine-grained labels. By augmenting the dataset with
strong labels that introduces both speech activity and speaker
distance estimation, the model may acquire a better understand-
ing of the room acoustics. In addition, this augmentation enables
the model to leverage additional contextual cues and refine its
predictions, enhancing its performance in accurately estimating
speaker distances and capturing the dynamics of speech activity.

Moreover, one of the key areas for improvement is the avail-
ability of larger datasets of real recordings with a greater number
of rooms and various speaker-microphone configurations. A
larger dataset would enable the model to learn more diverse
and representative acoustic characteristics, leading to improved
performance in distance estimation tasks. Moreover, it could
also improve the generalization ability of the approach, as it has
been demonstrated how the performance of the proposed model
is dependent on the nature of the audio recording (synthetic,
hybrid or real). Additionally, by including different room types
and microphone placements, the model can better generalize
across various real-world scenarios. Furthermore, the use of a
transformer-based [51] approach could be explored, leveraging a
larger amount of data. Transformer models have shown remark-
able success in various natural language processing tasks and
have the potential to capture complex patterns and dependen-
cies in acoustic data. Exploiting transformer architectures could
enhance the model’s ability to estimate distances accurately.

Another possibility for future research is the integration of
time-wise distance ground truth, as previously mentioned in
the discussion section. By considering temporal information in
addition to spatial cues, the model could potentially estimate the
distance of a sound source more accurately. This would provide
valuable insights in scenarios where multiple sound sources
are present. Estimating and tracking the distance of a moving
source is an application of interest that is scarcely explored in
the literature.

VII. CONCLUSION

This work has explored the task of speaker distance estimation
in noisy and reverberant environments. Multiple configurations,
in terms of kernel size and recurrent layers of the model, have
been provided, motivating the proposed architecture. In fact,
the use of rectangular filters across the frequency dimension
and the presence of GRUs layers yields the best performance in
terms of distance errors. The experimental results obtained from
the proposed model have demonstrated remarkable precision in
scenarios where several types of RIRs are employed. In a noise-
less synthetic scenario where RIRs have been generated with
a room-source simulator, the model has achieved an absolute
error of only 0.11 meters. With recorded RIRs, an absolute error
of about 1.30 meters has been obtained. In the real scenario
with on-field recordings, where unpredictable environmental
factors and noise were prevalent, the model yielded an absolute
error of approximately 0.50 meters. These results underscore
the model’s resilience and its capacity to effectively manage
various realistic scenarios. Variations in performance across
these scenarios can be attributed to differences in the distribution
of acoustic parameters, such as the distance from the sound
source. Analysis on moving sound sources in single-channel
recordings will be carried out as a future work.
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