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Abstract

This PhD thesis explores the field of scene understanding using
sound through artificial intelligence techniques. It addresses the
challenge of extracting relevant information from sound in envi-
ronments where other sensory inputs, such as vision, are limited
or occluded. The work contributes novel methods and models
for Acoustic Scene Classification (ASC), Sound Event Detection
(SED), Unsupervised Anomalous Sound Detection (UASD), and
speaker Distance Estimation, with a focus on reducing the com-
plexity of these systems while maintaining high performance.

The core of this research lies in the design of low-complexity deep
learning models, such as lightweight convolutional networks and
methods leveraging Chebyshev moments, which are applied to
various sound recognition tasks. These models are tested in noisy
environments and shown to be robust, offering state-of-the-art
results while being computationally efficient.

In addition to the theoretical contributions, the thesis explores
practical applications of sound-based scene understanding in do-
mains such as smart devices, security systems, and autonomous
vehicles, enhancing human-computer interaction and safety. Fu-
ture research potential includes the integration of multi-modal
sensory data and the development of more interpretable Al sys-
tems.
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Abstract

Questa tesi di dottorato esplora il campo della comprensione
delle scene attraverso il suono, utilizzando tecniche di intelligenza
artificiale. Affronta la sfida di estrarre informazioni rilevanti dal
suono in ambienti dove altri input sensoriali, come la vista, sono
limitati o ostruiti. Il lavoro fornisce nuovi metodi e modelli per
Acoustic Scene Classification (ASC), il Sound FEvent Detection
(SED), I Unsupervised Anomalous Sound Detection (UASD) e
la speaker distance estimation, con un’attenzione particolare alla
riduzione della complessita di questi sistemi mantenendo alte
prestazioni.

Il nucleo di questa ricerca risiede nella progettazione di modelli
di deep learning a bassa complessita, come reti convoluzionali
leggere e metodi che sfruttano i momenti di Chebyshev, applicati
a vari compiti di riconoscimento sonoro. Questi modelli sono
testati in ambienti rumorosi e si dimostrano robusti, offrendo
risultati all’avanguardia e garantendo al contempo un’efficienza
computazionale.

Oltre ai contributi teorici, la tesi esplora applicazioni pratiche
della comprensione delle scene basata sul suono in ambiti come
dispositivi intelligenti, sistemi di sicurezza e veicoli autonomi,
migliorando l'interazione uomo-computer e la sicurezza. Le poten-
zialita future di ricerca includono l'integrazione di dati sensoriali
multimodali e lo sviluppo di sistemi di intelligenza artificiale piu
interpretabili.
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Chapter 1

Introduction

1.1 Motivation

One of the most engaging aspects of our perception of the environment is
sound. It encompasses vast and diverse pieces of information about sources,
events, and activities in the environment. It can even evoke emotions, mem-
ories, and associations that create our experience and behavior. Humans
have evolved to process sound efficiently and effectively, using it for com-
munication, navigation, and interaction with the environment. Typically,
sound is ignored by most machines, which will turn instead to their visual
or textual inputs to do their job. However, sound can offer not only com-
plementary but also superior information to other modalities, especially in
complex and dynamic settings, or when other modalities are occluded.

In this context, scene understanding can be denoted as the act of
inferring pieces of information about a scene from its acoustic properties
alone. This encompasses identifying the source, its location, and associated
actions; understanding the geometric configuration and spatial arrangement
of the scene; as well as discerning the contextual atmosphere and emotional
tone. Mastering these elements constitutes a fundamental capability that
artificial agents must develop to operate effectively within authentic and
realistic environments. In such settings, sounds not only form an essential
component of the scene but also provide significant information about the
environment. This can be enhanced by the use of Al techniques—machine
learning, deep learning, and computer vision—to the effect that large-scale
data and powerful models can enable learning from sound to extract mean-
ingful features and representations. We motivate our research by provid-
ing some examples of scenarios where sound can play an important role
in scene understanding, and some applications where scene understanding
with sound can have a positive impact. We also discuss the main challenges

1



2 CHAPTER 1. INTRODUCTION

and opportunities of scene understanding with sound using artificial intelli-
gence techniques and outline the main objectives and contributions of this
thesis.

In most cases, sound can be an important component to scene under-
standing whenever visual or textual information is limited, incomplete, or
unreliable. This makes it possible, for example, to locate and identify
sources that are not in the line of sight because they are invisible or oc-
cluded by objects in the scene, such as a person talking behind a wall, a car
horn in a traffic jam, or even a bird chirping in the woods. In addition, it
can be used to identify and recognize slight or undefined sound events such
as a door opening, glass breaking, or even a gunshot. Sound can also be
used to classify and characterize complex or heterogeneous acoustic scenes
such as a busy street, a quiet park, or a noisy factory. Sound can be used to
play out vivid audio-visual scenarios, be it realistic or creative, like scenes
of a movie, video game, or virtual reality environment. It could also express
the context and tone of a conversation, music performance, or sports game.

Sound-based scene understanding can be beneficial in many applica-
tions, such as robots, smart devices, and intelligent systems in which ar-
tificial agents interact with real, naturalistic environments. For example,
scene understanding with sound will underlie advances in human-computer
interaction through enabling possibilities for artificial agents to communi-
cate, respond, and adapt to humans’ speech and general sounds, such as
voice assistants and speech recognition and sound synthesis systems. This
may enhance scene understanding with sound to make artificial agents be
able to assist, protect, and alert humans in performing their partial la-
bor of navigation, surveillance, emergency systems, and so on, to increase
both accessibility and safety. It will further support education and enter-
tainment by providing scene understanding with sound to help artificial
agents produce at will a good deal of audio-visual content and experience,
from educational games to music generation systems to virtual reality sys-
tems. Sound-aware scene interpretation can also help in scientific discovery
and further innovation by allowing artificial agents to analyze, model, and
understand natural and artificial phenomena and processes—bioacoustics,
environmental monitoring, and sound engineering.

Scene understanding with sound using artificial intelligence techniques
poses many challenges and opportunities for research and development.
Some of the main challenges are related to the diversity and complexity
of sound sources and events. In addiction, the variability and ambiguity of
sound perception and interpretation, together with the scarcity and qual-
ity of sound data and annotations, have a huge impact on the design of
learning-based approaches. Moreover, the alignment and synchronization
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of sound and vision, and the consistency and coherence of sound and vision
make multimodal architectures complicated.

One of the significant challenges that computational artificial intelli-
gence techniques address with respect to scene understanding with sound is
the complexity of computational models and methods. That is, deep learn-
ing models that have managed to reap impressive performance, namely,
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN),
and Generative Adversarial Network (GAN), on many varied tasks and
datasets are voracious consumers of data, memory, and processing power
while being trained and run. This limits their applicability and scalability
in real-world scenarios, where resources and time are usually limited. Addi-
tionally, the complexity of the models might lead to overfitting, generaliza-
tion problems, and interpretability issues, which would lower the depend-
ability and usability of the model. Therefore, in this thesis, we put attention
on the complexity of our models and balance them with performance and
quality. We have applied techniques like model compression, pruning, quan-
tization, regularization, and distillation to develop smaller, faster, and more
energy-efficient models that retain or sometimes improve in accuracy and
diversity. Measures of model complexity, efficiency, or trade-offs are applied
in this context. We show, at the same time, that our models and methods
provide state-of-the-art results on a variety of tasks and datasets, with a low
level of complexity and efficiency. We believe this to be an important and
very promising direction for the scene-understanding artificial intelligence
technique to develop models and methods that can operate in an accessible,
scalable, and reliable mode in natural and realistic environments.

1.2 Understanding the environment using
sound

The understanding of the environment using sound alone is very enlighten-
ing in terms of how humans and machines understand their environment.
Actually, sound in itself is a very rich and wide-ranging medium that conveys
much about the environment. It carries information about the presence of
objects, types of activities, features of spaces, and even the emotional tone
of an environment. The human mind is hard-wired to interpret these au-
dio signals; therefore, replicating this in machines would usher in a new
paradigm in the field of artificial intelligence.

Unlike visual information, which may be blocked by physical barriers
or darkness, sound is able to go through walls, around corners, and in
complete darkness. Hence, it forms a very rich source of information in
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learning about an environment for which visual data might be unavailable
or insufficient. For example, take a city street: the din of the car horns
and the people walking by is kind of a live soundtrack that will guide you
through the level of traffic and the pedestrian density and other hazards—no
vision necessary. Similarly, sounds in a forest—Ilike rustling leaves, chirping
birds, or running water—carry information on what type of vegetation, the
presence of wildlife, and how far one is from a water source.

One of the fundamentals in the environment sound analysis field is
acoustic scene classification, and it tries to reproduce human understand-
ing within machines. Al models can be trained on patterns that exist in
audio data; hence, such systems are to be developed which can identify and
categorize different environments—be it a quiet library, a bustling market,
or a peaceful park—only based on sound. This is not some sort of theoret-
ical ability but one that is finding its applications in many domains, from
smart cities to autonomous vehicles and personal assistants, which have the
potential to learn by themselves in order to adapt according to the context.

Artificial intelligence, especially by deep learning techniques, has rev-
olutionized the way scene understanding is based on sound. Traditional
approaches in the processing of audio typically involve handcrafted features
and domain-specific knowledge for the estimation of meaningful information
from the sound signals. These methods are sometimes useful, but they tend
to face the large variability and complexity of real-world sound scenes.

On the other hand, deep learning offers a much more powerful and
flexible approach. Al systems can be seen as automating the learning of
complex patterns and relationships in the audio data. Convolutional neural
networks, recurrent neural networks, and more recently, transformer models
have all been applied to scene understanding. These models can instill
both the temporal and spectral characteristics of sound; therefore, such
models can identify very fine-grained cues that might otherwise be lost if
the traditional signal processing techniques were effective.

In addition to recognition of environments, Al techniques can also make
further inferences about the context of the environment. This is done
through estimation of sound source distances, detection of anomalies in
sound patterns, and even prediction of future auditory events. Such multi-
dimensional understanding of sound empowers machines with decisions driven
by their auditory perception, moving us to a future where AI machines could
easily interact with the world in a more human-like approach.

These developments in Al further increase the opportunities for sound-
based scene understanding, but they also bring huge challenges. One major
challenge is the inherent difficulty in deep learning models; while they are
potent models, they are very data- and computationally demanding. In
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fact, this need for huge labeled datasets increases in the audio domain,
which usually becomes time-consuming and costly.

Moreover, deep learning models are still seen as black bozres because it
is not very clear how they make their decisions. It could be a drawback for
critical applications where reasoning about a model’s prediction is as impor-
tant as the prediction itself. Research on the development of explainable Al
techniques and on even more effective model architectures is thereby of high
importance and accordingly plays an active role in the research landscape.

Also, environmental sound usually has a complex and unpredictable
nature. Background noise, overlapping sounds, and changing conditions of
recordings—they all cause the degradation in the performance of AI models.
The development of systems that are robust to these kind of variations
stands out as the key challenge researchers are actively trying to overcome.

The complexity in both model architecture and required data of deep
learning models is a double-edged sword. On one hand, this can make very
sophisticated systems possible; on the other hand, it opens the way to large
challenges regarding computational efficiency, data requirements, and model
interpretability.

In the following Sections, we will go in more detail regarding this com-
plexity problem of deep learning in developing Al systems for sound-based
scene understanding. We will see trade-offs between model accuracy and ef-
ficiency, study the contribution of model optimization techniques, and how
some of these challenges can be mitigated by new advances in Al. The pro-
cess of these issues will be understood and dealt with on the way to make
sound-based Al systems powerful but practical for real-world applications.

1.3 Low-complexity approaches for fast
training and inference

The evolution of deep learning models escalated to new dimensions of com-
plexity with very brilliant achievements in all domains, especially sound-
based scene understanding, while Al goes on improving. Their rising model
complexity, however, comes along with severe side effects: high computa-
tional load, along with long training time and powerful hardware require-
ments. All these factors make deployment not so easy for AI methods within
real-world applications, mostly with respect to resource-constrained appli-
cation scenarios where efficiency and speed are crucial. Need for designing
intrinsically low-complexity models

Most real-world applications, such as real-time sound recognition in
mobile devices, autonomous systems, or edge computing, require efficient
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and effective Al models in the first place. Instead of doing this post hoc
with reduction techniques, it is much more efficient and more sustainable
to design models from scratch that are intrinsically low in complexity. This
design philosophy guarantees that models are intrinsically amenable to fast
training and inference without giving up much in the way of accuracy or
massive computational resources.

The main rationale for developing low-complexity models by design is
to enable Al systems that can be deployable on high-performance servers
all the way down to resource-constrained edge devices. Building simplicity
and efficiency into the initial model design guarantees that these systems
are not only powerful but also practical for real-world use.

The efficient design would then have to take into consideration efficiency
at each stage of model development. This field has its focus on the selection
and optimization of neural architectures that can intrinsically balance per-
formance with computational efficiency, getting rid of the need for extensive
post-training modifications.

The design can be described by the following steps:

s Efficient Architecture Selection. At the least, the selection of a
neural architecture itself has a lot to say in deciding the complexity
of the model from scratch. Some architectures, such as MobileNet,
SqueezeNet, and EfficientNet, have been designed to be efficient in
performance and to keep computational demands at their minimum.
These models have been designed with such techniques as depth-wise
separable convolutions and compound scaling, making it possible to
achieve higher accuracy with fewer parameters and less resource con-
sumption.

s Layer and Operation Optimization. Designing low-complexity
models entails not only keeping the parameters at a minimum but also
taking great care in regard to the type of layers and operations that
are used with networks. For instance, replacing conventional convolu-
tional layers with the lightweight counterparts or reducing the number
of layers and parameters without any performance degradation to a
meaningful extent would bring down the computational footprint of
the model drastically. The aim is at creating a network that has been
tailored to that particular and specific task at hand; removing com-
plexities not required. Another important factor in low-complexity
model designing is the tailoring of the architecture as required by the
task. For example, certain audio features will be more relevant in
sound-based scene understanding compared to others. Thus, by fo-
cusing the design of the model on such relevant features and avoiding
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those irrelevant, we could make the model low in complexity without
losing its accuracy.

s Algorithmic Efficiency. Going beyond the architecture itself, one
can optimize the efficiency of algorithms used for training and infer-
ence. It involves choosing lightweight activation functions, dropping
precision wherever possible in operations, and using efficient data-
handling techniques. All of these make sure that not only will the
model’s complexity be kept low because of its structure, but in actual
training and deployment, as well.

Designing low-complexity models by design requires making a delicate bal-
ance between simplicity and performance. A sophisticated enough model to
do the job efficiently needs to be devised, yet simple enough that it is train
and deploy in haste, even on limited hardware. This is attained through
targeted decisions at the model design stage itself, with a focus only on core
functionality and efficiency while side-lining any accidental complexities.

By focusing on intrinsic low-complexity design from the outset, we en-
able Artificial Intelligence (Al) systems with the intrinsic ability for speed
in training and inference. This will then make the process of development
more direct and the models obtained at the end more robust and versatile
across different deployment scenarios, with less reliance on post-hoc opti-
mization strategies.

Now, as we close off the discussion on low-complexity approaches for
fast training and inference, it becomes very important to have designs of
efficient models right from the beginning in order to see a wide diffusion of
Al into practical applications. That is to say, efficiency intrinsic to model
design guarantees that Al systems will be powerful, accessible, and scalable
for real-world challenges.

1.4 Scope and objectives

The main objectives of this thesis are the following:

m O;. Design and implement Al models for the acoustic scene classifica-
tion task that will correctly classify numerous acoustic environments
from sound only, optimising both for performance and computational
efficiency.

m O,. Investigate low-complexity neural architectures that enable fast
training and inference with high accuracy in tasks related to the un-
derstanding of scenes from sounds.
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m Ogz. Improve Al systems in the perception and interpretation of com-
plex soundscapes involving scenarios with overlapping sounds and
changing environmental conditions.

m O4. Implementation and evaluation of Al techniques for the estima-
tion of the distance of sound sources for more complete scene under-
standing.

m Oj5. In the context of device resource constraints, develop and optimize
AT models that enable real-time sound recognition on, for example,
mobile phones and edge computing platforms.

m Og. Deep learning’s model complexity versus performance trade-offs
has to be reviewed and addressed to come up with models efficient
enough yet effective for practical applications concerning sound-based
scene understanding.

1.5 Thesis outline

This dissertation is composed of six Chapters (as described in Figure 1.1)
and four Appendices. The major contributions of this thesis on the research
objectives are described from Chapter 3 to Chapter 6, covering most of
the author’s publications which are listed in Appendix B. In the following,
we provide a brief description of each Chapter, illustrating contributions,
achievements, and advances with respect to state-of-the-art approaches.

In Chapter 2 a comprehensive background necessary for understanding
methodologies and techniques for sound event recognition in particular with
regard to artificial intelligence are provided. It starts by providing some
background knowledge of the sound, audio signal, and signal processing,
in particular, room acoustics and audio representation, including some of
the basic techniques in signal processing. These basic concepts are very
important for a further understanding of how the audio data is transformed
and analyzed before actual recognition techniques.

The Section also discusses the application of artificial intelligence in
the recognition of audio events. It describes the theoretical aspects of the
Al sound recognition process, including a few methodologies of supervision
that the training of an Al model can use. In more detail, the application of
neural networks is explained to determine acoustic events and points out the
most used datasets for training and evaluation. Besides that, it illustrates
the importance of the loss function during optimization. It also introduces
several methods of performance assessment of models. This section provides
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Figure 1.1: Visual explanation of the research context of the
Thesis.

an extensive background that will help the reader in appropriately under-
standing and handling the advanced topics within the later chapters of the
thesis.

In Chapter 3 deals with ASC as one of the fundamental tasks in machine
listening and audio signal processing. This chapter presents an insight into
how an ASC system is designed to automatically detect and classify the
environmental context such as distinguishing different sounds recorded in
an airport, bus, or metro. The Chapter gives the important focus that it is
necessary to develop robust models by using various audio data, captured
in a wide variety of urban environments and with different devices, such
that generalization across different acoustic conditions can be attained.

It includes the following major contributions: a novel use of Chebychev
moments for audio classification on constrained hardware; a low-complexity
neural network designed based on the Chebychev moments; and an ad-



10 CHAPTER 1. INTRODUCTION

vanced deep learning approach exploiting an attention module with a Wave-
gram representation in order to enhance the power of the feature discrim-
ination, together with an algorithm for multi-iteration fine-tuning that is
designed to improve model generalization. The contributions target domain
adaptation and degradation in performance due to changes in recording con-
ditions, and this work attempts to augment real-world effectiveness in ASC
systems.

Chapter 4 focuses on how to tackle some of the challenges of UASD,
i.e., in cases where labeled data is minimal or not available, such as indus-
trial varieties or environmental noise monitoring. Specifically, the Chapter
considers the challenges of modeling normal behavior in dynamic acoustic
environments, where factors such as operational changes and environmental
noise can drastically vary. It examines state-of-the-art approaches, includ-
ing reconstruction-based and classification-based methods in UASD, with
further consideration for aspects related to computational efficiency and
model interpretability.

The attention module developed in the Chapter enhances anomaly de-
tection through significant time-frequency pattern focusing, the use of sepa-
rable convolutions for reducing model complexity, and a statistical analysis
of attention maps for an understanding of the cues for detecting anoma-
lies. These are all innovations meant for enhancing the performance and
efficiency, and providing insights into the UASD systems for real-world ap-
plications.

In Chapter 5 a SED system for the identification and localization of
anomalies in audio clips, detecting event type and their exact onset and
offset times, is developed. Unlike the traditional classification of audio,
SED requires the identification of an event precisely both in terms of type
and exact timing-both of which current models, including those trained on
large-scale general purpose audio datasets, cannot achieve, especially when
the operating conditions are noisy.

The solutions for these problems are shown in Chapter 5, together with
a new SED model consisting of a CNN with an incorporated Atrous Spatial
Pyramid Pooling (ASPP) module, called AuSPP, which is designed and
optimized for recognizing safety-threatening audio events-like gunshots or
shouting-within public transportation settings. Since there is a lack of spe-
cialized datasets in this field, the Chapter introduces a new dataset, Sound
Event Detection Dataset On Bus (SEDDOB) for sound event detection in
noisy bus environments.

The performance of this system, measured in terms of recall and F1-
Score metrics, is more accurate compared to the state-of-the-art. The pro-
posed model can also be adapted according to the time resolution and
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anomaly classes. Our major contributions include: better spectrogram
design by using ASPP, a lightweight yet customizable SED system, and
developing a specialized SED dataset for bus environments.

In Chapter 6 an extension of the work on SED is proposed by ad-
dressing the task of Continuous Speaker Distance Estimation. Following
the detection of speech events in an audio scene, the estimation of the
distance of the speaker from the microphone becomes an important task
to gain deep insight into the spatial dynamics of the environment. First,
the problem of identifying whenever a speech is real or fake is considered.
Recently, generative deep learning architectures raised a growing concern
about the deep-fake problem, regarding fake audio. Deepfakes are synthe-
sized by means of Al algorithms - such as GANs, CNNs, and Deep Neural
Networks (DNNs) - to generate artificial media contents that are difficult
to distinguish from real ones. In this way, this technology could be used
to implement attacks against persons and institutions. Therefore, interest
has spread from generating to recognizing deepfakes, creating huge interest
in this research community. Moreover, knowledge of the synthesis method
of a deepfake audio can reveal some information about the forger himself.
Despite its importance, this problem is still in an embryonic stage.

The next step involves the definition of a baseline for single-channel
speaker distance estimation, that is a Convolutional Recurrent Neural Net-
work (CRNN). Particular attention is paid to the problems arising due to
modified acoustic conditions and how these methods can be adapted to a
variety of real-world situations.

Finally, in Chapter 7 an overall summary of the thesis and its main con-
clusions are drawn, together with the main contributions, and a discussion is
proposed about possible future perspectives of audio processing and recog-
nition. In addition, this Thesis encompasses four Appendices. Appendix A
contains additional figures for a better interpretation of the evaluation re-
sults. Appendix B lists all the publications by the author during the Ph.D.
period. Appendix C details the open data and code resources. Appendix D
includes all the acronyms used in this Thesis.
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Chapter 2

Background

2.1 Introduction

This Chapter aims to provide a detailed basis for understanding the method-
ologies and techniques used in sound event recognition, especially with the
use of artificial intelligence. As this thesis deals with deep learning in audio
processing, it is useful to establish a basic understanding of the concept of
audio signals and their processing and the role played by artificial intelli-
gence methods in this area.

The basic principles of sound, audio signals, and signal processing are
first introduced in Section 2.2. Elements of room acoustics, audio rep-
resentation, and the basic techniques for processing audio signals will be
introduced. These are the fundamental concepts for understanding audio
data processing and analysis before progressing to powerful and advanced
recognition techniques.

Section 2.3 investigates the recognition of audio events using artificial
intelligence techniques. Various theoretical bases related to artificial intel-
ligence for sound recognition are discussed, such as the types of supervision
methods in an Al model training, using neural networks to identify acoustic
events, and common datasets utilized for training and testing purposes.

13
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2.2 Fundamentals of audio signal
representation andprocessing

2.2.1 Helmoltz equation for acoustics

The acoustic properties of a room play a crucial role in shaping the sound
that a microphone captures and analyzes. The acoustic properties of a room
or environment affect the way sound waves propagate, reflect, absorb, and
diffuse, thus affecting the quality and characteristics of the audio signal [1].

In general, the propagation of a sound in an environment that is bounded
in all directions, i.e., in a room, can be described in closed form through
wave theory. Starting from the Helmoltz equation, it is possible to solve
the Partial Differential Equation (PDE) in steady-state conditions where
the sound fields are time-invariant (i.e., time-harmonic) to evaluate room
modes, which are specific patterns of pressure variations at different frequen-
cies [1]. The general wave equation for sound pressure p(r,t) as a function
of position r and time ¢ is:

1 9%*p(r,t)

2 Ot?
where c is the speed of sound in the medium (approximately 343 ms™1!), and
V2 is the Laplacian operator, which accounts for the spatial variation of the
sound pressure. For time-harmonic sound waves, where the sound pressure
varies sinusoidally with time, we can express the sound pressure as

= V?p(r, 1), (2.1)

p(r,t) & R{p(r)e '}, (2.2)

where p(r) is the complex amplitude of the sound pressure as a function
of position, w is the angular frequency of the sound wave, R{-} is the real
part operator, and ¢ is the imaginary unit.

Applying the temporal Fourier transform to Equation (2.1), we obtain
the Helmholtz equation.

V23p(r, f) + E*p(r, f) = 0. (2.3)

Here, k is the wavenumber, defined as k = 2. Equation (2.3) describes
the variation of sound pressure in an environment or space, such as a room
or concert hall. This solution allows better estimation of the interaction of
sound waves at boundaries (e.g., the walls of a room). These conditions
specify how waves reflect, absorb, or transmit at surfaces, and they are
applied to the Helmholtz equation to yield solutions for the applied sound
field in the space. In addition, the Helmholtz equation also indicates the
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resonant frequencies in an enclosed space. These represent frequencies of
the applied sound wave, where the average levels of sound pressure will be
substantially increased through the constructive interference of waves in the
confines of the room. The resonant frequencies correspond to the natural
frequencies where the standing waves will be formed in the room.

By solving the Helmholtz equation, it is possible to predict how the
sound will behave in the environment, where augmentation or cancelation
will take place, or predict the interaction of sound in the environment with
other boundaries or reflective surfaces.

However, the use of the Helmholtz equation is untractable for several
reasons. First, we assumed that sound is time-harmonic, that is, it oscillates
sinusoidally at a fixed frequency. Sounds such as clicks, pulses, or any kind
of noncontinuous noise do not have a fixed frequency in time and are not
adequately represented by the Helmholtz equation. These might require
shock wave analysis using time domain methods, progressing towards the
full wave equation. Moreover, in real acoustical situations where there is
complex noise that has a wide range of frequencies (i.e., environmental
noise or music), a model needs to address multiple, varying frequencies
simultaneously, which Helmholtz does not provide.

Moreover, the Helmholtz equation requires that the medium be linear
and homogeneous; in particular, the presence of pressure- and amplitude-
independence of medium properties, such as compressibility (relative volume
change), sound speed, density, and related parameters. In many physical
situations, this may not be true.

2.2.2 Acoustic reflections

The equations described in the previous Section are based on unbounded or
infinite mediums such as free space; the latter is an unrealistic scenario in
our daily applications. Real mediums are usually bounded, at least in part.
An example is air, which is the propagation medium in a room bounded by
walls, a ceiling, and a floor. When sound travels in an outdoor environment,
the ground is a boundary in one of the propagation directions. Hence, sound
waves do not cease when reaching the boundary edge or simply encountering
an object. Sound waves interact with these mediums in ways that depend on
the majority of the acoustical and geometrical properties of collided objects.

Depending on the acoustic and geometric properties of the obstacles,
the sound waves will interact with them in different ways, as shown in
Figure 2.1. The wave can be reflected from the obstacle, diffracted by it, or
transmitted through it. During transmission, the wave may also experience
refraction while passing through an obstacle and lose some of its energy
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inside the material.
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Figure 2.1: Types of possible behaviors when a sound wave hits
an obstacle.

Reflections generally occur when a sound wave encounters a large sur-
face, such as a room wall. When the wave reaches an edge or a slit in the
wall, it undergoes diffraction, bending around the corners of the obstacle.
The diffraction point essentially acts as a secondary source, which can in-
teract with the original wave. The portion of energy that is transmitted
into the object may be absorbed or refracted.

Two kinds of acoustic reflections may occur when sound falls on a solid
surface: part of the energy in the sound is reflected specularly, wherein the
angle of incidence is equal to the angle of reflection, while another part is
reflected diffusely, or scattered wherein it disperses in all directions.

The relative proportions of these phenomena depend upon the acoustic
and geometrical properties of the surfaces and the frequency content of
the wave. In acoustics, it is customary to define certain operating points
and different regimes based on the wavelength A\ = 27”, such as near-field
versus far-field conditions. We can distinguish three responses of objects
(or irregularities) of size d to a plane wave:

m For A > d, the inhomogeneities are insignificant, and the sound wave
reflects specularly.

s When X\ & d, the irregularities interfere with the sound wave, which
reflects the wave in many different directions.

s When )\ < d each roughness becomes a surface that specularly reflects
the sound waves.

However, real-world surfaces are not perfectly flat and smooth. Other
examples include rough-faceted walls and raw brick walls, while in the case
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of a concert hall, the entire audience area could be considered as another ex-
ample. If these surface irregularities are of the same scale as the wavelength
of sound, diffuse reflections happen.

The acoustic ray of a plane wave can also be imagined as a packet of
rays that move in unison. If such a packet impacts a rough surface, each
individual ray is reflected in some different direction. This gives rise to
the phenomena named scattering. It creates a very large number of new
rays and smears them out uniformly in the original half-space. The carried
intensity in each outgoing ray depends on the angle and can be modeled
to a good approximation by Lambert’s cosine law, originally developed to
describe optical diffuse reflection.

Added energy reflected can be calculated a-priori by the scattering co-
efficient of the material of the reflecting surface, or it is determined a-
posteriori by the diffusion coefficient, i.e., the ratio of the energy of specular
reflection to totally reflected energy.

This is because, with sound diffraction, it occurs at the edge of a limited
surface. For instance, this behavior happens when a sound passes a corner
or a door opening. When it reaches an edge of a reflector, the wave diffracts
around the back of it. These diffraction waves that occur around an edge
of a semi-infinite reflector will enable sound to travel into areas behind the
reflector. This physical effect is naturally exploited by the human ear as
part of its approach to sound source localization.

2.2.3 Elements of room acoustics

Room acoustics examines how acoustic waves propagate within an enclosed
space bounded by surfaces such as walls and floors and how these waves
interact with those surfaces. From a mathematical point of view, it is
possible to analyze the propagation of the sound by solving Equation (2.3).

From now on, this thesis will follow a discrete-time signal processing
notation, and any room can be acoustically described by its Room Impulse
Response (RIR). Any two points in an enclosure can be denoted as the input
and output of a Linear Time-Invariant (LTI) system. Figure 2.2 shows an
example of a RIR described as

h[n] & haln] + heln] + hi[n). (2.4)

Except for trivial cases, calculating RIRs in closed form is a complex
task. As a result, numerical solvers or approximate models, such as wave-
based, geometric, and hybrid simulators, are typically used.

As depicted in Equation (2.4), a RIR h[n| can be decomposed into three
main components:
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m the direct path hy[n] of the sound wave from the transmitter to the
receiver. It is equal to the free-field sound propagation.

m the early reverberation (or also early reflections or echo) h.[n] consists
of a few distinct reflections, typically originating from the surfaces of
the room. These reflections are usually sparse in the time domain and
have a greater prominence of amplitude compared to the reflections
that occur later.

» the late reverberation h;[n] encompasses numerous reflections that oc-
cur at the same time with energies that decrease exponentially. It
gives the perception of the spaciousness and the features of the mate-
rial that exist within the room [2]. This element of the RIR is part of
the listener envelopment, which is related to the immersiveness of the
sound field. The region is mainly characterized by the sound diffusion,
which in turn is affected by the roughness of the surfaces.

N Direct path

Early reverb

Signal x|n]
=
S
=¥
vy

‘ ‘ Late reverb

A
v

RT60 [s]

Figure 2.2: Illustration of the RIR, showing the direct path,
early reflections (early reverb), and late reflections
(late reverb).

Focusing on early reverberation cues, their effects have been studied in
the state-of-the-art:

m The precedence effect occurs when two correlated sounds are per-
ceived as a single auditory event [3]. This typically happens when
the sounds reach the listener with a delay of 5 to 40 milliseconds.
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However, the spatial location perceived from the first-arriving sound
dominates, effectively suppressing the location of the lagging sound.
This phenomenon enables humans to accurately pinpoint the direction
of the primary sound source, even in the presence of strong reflections.

m The comb filter effect refers to a change in the timbre of perceived
sound, known as coloration. This occurs when multiple reflections
arrive in a periodic pattern, causing constructive or destructive inter-
ference. This phenomenon can be effectively modeled using a comb
filter [4].

m Apparent source width is the audible impression of a spatially extended
sound source [5]. By the presence of early reflections, the perceived
energy increases, providing the impression that a source is larger than
its true size.

m Distance and depth perception provide the listener with cues about
the 3D location of the source. A fundamental cue for distance percep-
tion is the DRR, i.e., the ratio between the direct path ratio and the
remaining portion of the RIR

2
DRR % 10 1og,, —a!")

(2.5)

The audio recording y[n] obtained from a microphone placed in a room
with RIR h[n] can be retrieved by convolution

o

yln] = a[n] « h[n) = 3" alm]hln —m], (2.6)

m=—0o0

where z[n| is the sound produced by a source.

Another acoustic characteristic of rooms is the reverberation time. Specif-
ically, it measures the time that takes the sound to “fade away” after the
source has ceased to emit. As shown in Figure 2.2, the reverberation time
RTgo is the required time of the sound wave’s energy to decay of 60dB.
This value depends on the size and absorption level of the room (including
obstacles), but not on the specific positions of the source and the receiver.
Real measurements of RIRs are affected by background noise. As a conse-
quence, it is not always possible to consider a dynamic range of 60dB, i.e.,
the energy gap between the direct path and the ground noise level. In this
case, the RTgy value is approximated with other methods, such as Sabine’s
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formula
0.146Vror

> i i

where Vror [m?] is the volume of the room, «; [%] is the absorption coeffi-
cient of the surface with area A; [m?].

RTgo ~ [s], (2.7)

°]

2.2.4 Representations of audio signals

In the previous Section, the principles governing sound propagation from the
source to the microphone have been explored. A single-channel raw audio
signal represents the variations in pressure over time on the microphone
membrane and is mathematically expressed as the continuous function

i R>R (2.8)
t— & (t). (2.9)

If an audio signal is multichannel, it is denoted as the vector X(t) = [Z;(t),i =
1,...,c] with ¢ channels. For example, stereo recordings are composed
of two channels, i.e., left and right, and they can be defined as x5(t) =
[2(t),Z,(t)]. In this Thesis, if not mentioned, all the audio signals are
single-channel.

To process audio signals by computers, they require sampling and quan-
tization of Z(t), yielding a finite time-series audio signal

r € RN (2.10)

where N is the number of samples with sampling frequency f; in Hertz.
The selection of the sampling rate f; depends on the specific application,
balancing computational power with processing and rendering quality. His-
torically, the two standard values were 44.1 kHz for music distribution on
CDs and 8 kHz for early speech communication. Today, multiples of 8 kHz,
such as 16, 48, 96, and 128 kHz, are commonly used in audio processing.

While the raw audio signal captures the amplitude of sound over time,
its spectrum represents the sound as a function of frequency. In more detail,
signals in this domain are represented as a combination of sinusoids based
on their frequencies. This transformation is accomplished using the Fourier
transform (%) which projects a continuous-time-domain square-integrable
signal Z(t) onto a space defined by continuous-frequency complex exponen-
tials

~

X(f) = Zlat) & /_ e e, (2.11)
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where f € R denotes the frequency in Hertz. In this domain, linearity and
the convolution theorem are defined as follows:

Z ) Z Z X,(f) (Linearity) (2.12)
at) = h(t) Z X()H(f) (Convolution theorem) (2.13)

However, it is not possible to accomplish the continuous Fourier trans-
form in a digital environment. Hence, in the case of discrete and finite-time
signals, the Discrete Fourier Transform (DFT) is performed instead

X[k = Foer{aln]} € 3 alnle 2 (2.14)

1=—00

where k € {0, ..., F'} denotes the frequency bin and F' is the total number
of bins. Albeit the difference of domain, the linearity and convolution the-
orem still hold using the DFT, but in discrete-time signals, the continuous
convolution is substituted with its circular version.

However, both time and frequency representations alone are poor con-
cerning the amount of information they encompass. Pieces of information
are encoded in the evolution of frequencies and their amplitude over time,
as we can inspect in Figure 2.3. Time-frequency representations are an ade-
quate representation of sound to consider both temporal and spectral char-
acteristics of sound simultaneously. An approach that is frequently used in
signal processing to examine how a signal’s frequency content changes over
time is the STFT. Differently to the conventional Fourier transform, which
provides an overview of a signal’s frequency components, the STFT divides
the signal into smaller time intervals and applies the Fourier transform to
each one separately. This is especially helpful for evaluating non-stationary
signals, such as audio recordings, whose frequencies fluctuate over time, as
it yields a time-frequency representation that discloses the signal’s spectral
and temporal properties.

To compute STFT of z[n], let w : [0,...,N — 1] — R be a window
function (usually Hann) of N samples and H € N be the hop size which de-
termines the number of overlapped samples between time segments. Then,
the discrete STFT Xgrpr € CM*E of the input signal z[n] is given by

STFT{a[n]}[m, k] & Z_:a[n]w[n — ke~ i2mmn/Norr (2.15)

where m € [0,...,M — 1] and k € [0,..., K| are the time and frequency



22 CHAPTER 2. BACKGROUND

Waveform

s o o
—_ N W

Amplitude
=

|
=
=

|
o
[N

—0.3

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

FFT of the Audio Signal

|
o
=1

Magnitude
L
(=)

0 2500 5000 7500 10000 12500 15000 17500 20000
Frequency (Hz)

Figure 2.3: Time and spectrum of an audio signals in which
street music is present. Audio sample from Urban-
Sound8k.

bins, respectively. The number M = L%J represents the maximum
time frame index in which the input signal x[n| is nonzero. The maxi-
mum frequency index K = % represents the Nyquist frequency % To
emphasize time-frequency patterns, log-spectrum is usually employed as
201log,, |[STFT{aln]}||, where || - || denotes the norm operator. In this the-
sis, all the time-frequency representations’ sizes are denoted using 1" and F'
for the number of time and frequency bins, respectively. Similarly, each bin

is denoted with t and f.

It is important to note that the STFT has linearly distributed frequen-
cies. This representation is useful when working with speech data. However,
this characteristic does not mimic the human auditory system, failing to
capture the meaningful features of the audio signal for human perception.

Using power-spectrum smoothing is one way to solve the problem. One
possible application for this would be a triangle-shaped Finite Impulse Re-
sponse (FIR)-filter. The average of the power surrounding a given frequency
is evaluated, giving nearby frequencies more weight than distant ones. Next,
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a triangle-shaped selection of the weighting parameters is made. In order to
ensure that the number of samples collected and the amount of smoothing
are equal, the smoothed samples are computed at intervals equal to half the
triangle’s width. Connecting multiple FIR filters yields a filterbank.

The Mel filterbank is one of the most used frequency projectors in the
context of audio processing. Specifically, it converts linear frequencies into
log-scale, mimicking the Human Auditory System (HAS), using the map-
pmg

futel = 2595 log (1 + f%gT). (2.16)

In this Thesis, the operator Hy,{-} denotes the Mel filterbank with b
filters. A single triangular filter Hy(f) at index k can be defined as:

0 if f<froiorf> fep
H(f) & it < f< i (2.17)
Dol i fy < f < frn

where fj is the Mel frequency of the k-th filter. The output of the Mel
filterbank is also denoted as the Mel spectrogram. This representation is
extensively used for SED, in conjunction with MFCC, which are obtained
by performing a Discrete Cosine Transform (DCT) on the Mel spectrogram.
It has been shown that this procedure permits the reduction of the autocor-
relation between lower and higher frequencies. This property helped to use
MFCC in speaker identification tasks. The procedure of extracting MFCC
is denoted as Hyrcco{-}

Other types of filterbanks can be employed for the application and con-
text. For example, Bark spectrogram [6] follows a different frequency map-
ping with respect to Mel:

fBark = 13 arctan(0.00075 fstrrr) + 3.5 arctan((‘%—FOT)Q). (2.18)
The objective of Bark spectrograms is to reproduce a perceptual scale of
pitches judged by listeners to be equal in distance from one another. We
denote this filterbank processing as Hgan{-}-

GTCCs [7] are other time-frequency representations of audio signals
that have been designed for non-speech audio classification. The extraction
of coefficients is similar to MFCC, i.e., the use of DCT to the log-spectrum,
but the impulse of a gammatone filter is a gamma distribution multiplied
by a sinusoid:

haroe, (n) = n* e ™8 cos(27 fon + @) (2.19)
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where k is the order of the filter (typically set to 4), B is the bandwidth,
fe is the center frequency, and ¢ is the phase. This filterbank is commonly
used to model the auditory filters in the human cochlea. In this Thesis, we
refer to Hgroc{-} the entire GTCC feature extraction pipeline.
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Figure 2.4: Time-frequency representations of the audio sam-
ples (the same as in Figure 2.3 encompassing street
music. )

With a focus on audio processing for music analysis, Chromagram has
been introduced as a time-frequency representation that highlights the in-
tensity of each of the 12 musical pitch classes of the octave at each time
frame. Specifically, the filterbank maps audio signals onto a 12-dimensional
feature vector, where each dimension corresponds to one of the 12 distinct
pitch classes, or chroma, of the musical octave: C, C#, D, D#, E, F, F#, G,
G#, A, A#, and B. That is, all pitches that are an octave apart are mapped
to the same chroma value. This representation is especially useful for mu-
sic transcription, genre classification, and chord recognition. It works by
dividing the frequency spectrum into a set of filters, one set corresponding
to each of these pitch classes.

Clearly, each representation provides a trade-off between time and fre-
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quency resolution (the so-called Uncertainty principle), making one ap-
proach more suitable in some tasks than others. This principle can be
inspected in Figure 2.4, mostly in the range of low frequencies of the STFT.
For this reason, learnable filterbanks have been recently explored in the
state-of-the-art. It is possible to learn from data a tailored time-frequency
representation that is specific to the task we want to solve. We will use
them in the following Sections.

2.3 Sound event recognition with artificial
intelligence techniques

2.3.1 Elements of artificial intelligence theory

Al refers to a subfield in computer science wherein researchers direct their
effort toward the development of systems that are competent in performing
tasks normally executed by humans. These operations may include, among
others, comprehension of natural language, recognition of patterns, decision-
making, problem-solving, and learning from experience.

Among the core elements of Al, Empirical Risk Minimization (ERM)
emerges as one of the most basic ideas within the theory of machine learning.
ERM is a principle used in the context of supervised learning to guide the
training of models. The main idea of ERM is that, from a hypothesis class,
it tries to find the hypothesis or model that has the minimum empirical
risk, which is defined as the average loss over a given set of training data.

Consider a dataset D = {x;,y;)},, where z; is a generic input belong-
ing to the input space X and y; is its corresponding label belonging to the
label space ). The aim is to find a function g : X — ) from hypothesis
space H in such a way that it can predict the label y of new input z;, which
were not seen during the training.

To evaluate the goodness of a prediction, a cost function is employed,
which is also denoted as loss. In this Thesis, all the loss functions are
denoted with £

Then, the empirical risk is the sample average loss over the training
dataset:

R(9)™ = £low). ) (2.20)

ERM focuses on searching the hypothesis ¢g* that minimizes this empirical
risk:
t = in R(g). 2.21
g" = argmin R(g) (2.21)
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The formal justification for ERM lies in the statistical learning theory,
which sets the roots of understanding how well a learning algorithm will
generalize from the training data to new data. In this regard, a crucial
quantity is the true risk or expected risk R(g), measuring the expectation
of the loss over the full data distribution p, :

R(9) = Eayympe, 1£(9(x), 1)), (2.22)

where E[-] is the expected value operator. Since the true data distribution
P(z,y) 18 not known, it is impracticable to directly minimise the expected
risk (only estimate it empirically). Instead, it is possible to minimise it by
optimizing the empirical risk R(g) as calculated over the finite training set
D.

The focal problem of the field of machine learning is to enable ERM
to eventually find a model whose performance generalizes well beyond the
data on which it has been trained. The generalization error is the difference
between the expected risk, R(g), and empirical risk, R(g), present in the
hypothesis set:

Generalization Error = R(g) — R(g) (2.23)

In statistical learning theory, generalization bounds are usually results
exposing how the generalization error is top-bounded by one, sometimes in
more complicated terms, of the properties of the hypothesis space H. One
of the most famous results in this area is the Vapnik-Chervonenkis (VC)
inequality [8], which relates the generalization error to the VC dimension (a
measure of the capacity of the hypothesis space) and the number of training
samples n.

The way it realizes this trade-off between bias and variance underlies a
lot of the practical success of ERM:

m Bias: This is an error in the approximation of a reality-bound prob-
lem, which might be too complex for a simple learned model. A model
with high bias might underfit the data, with both high training and
testing errors.

m Variance: The error due to the model’s sensitivity to the fluctua-
tions in the training data. A high-variance model, that is to say, a too
complicated neural network, might overfit the training data, captur-
ing noise rather than the underlying distribution. The training error
would be low, but at the same time, the testing error would be high.

ERM tries to balance the two sources of error by choosing a model that
minimizes the empirical risk while staying clear of overfitting. This is done,
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in most cases, through regularization or punitive measures using modeling
of too complex models.

Regularization techniques under the ERM framework usually work to
alleviate the overfitting of the hypothesis space H to the data. The idea is
to add a penalty term to the empirical risk in a way that does not allow too
complex a hypothesis space. The regularized risk is of the form

Reeg(9) = R(g) + A2(9), (2.24)

where Q(f) is a regularization term that measures how complex the

model f can be, and ) is a hyperparameter controlling the trade-off between

the empirical risk and the regularization term. Common types of regulariz-

ers include L; (Lasso) and Ly (Ridge) penalties, which induce sparsity and
control the magnitudes of parameters, respectively.

2.3.2 Types of supervisions

Let consider a dataset in supervised learning where consists of input—output
pairs D = {x;, ;) }1-,, such that it denotes an input example x; and is a cor-
responding output target vector y; representing the labels associated with.
In this thesis, the output target vector y normally contains the binary refer-
ence labels, y € {0,1}¢, of a task using a vocabulary V = {¢;}.; made up
of C' classes. A value of 1 in y indicates that class ¢; is present in the input
example x, while a value of 0 indicates absence. In the case of multi-class
problems, labels are represented as one-hot vectors, where only one element
may be equal to 1. In contrast, multi-label problems are represented by
labels as multi-hot vectors, allowing more than one element to be equal to
1. Hence, we will refer to such input examples as input representations.

In unsupervised learning context, instead, the dataset is a collec-
tion of input examples with no corresponding output target vectors, i.e.,
D = {z;}",. Unlike in supervised learning, the objective of unsupervised
learning is to find patterns, structures, or representations of data itself with-
out any prior knowledge about the labels. Learning-based models in this
field are typically trained to learn meaningful representations of the input
data x;. Representations, commonly called latent representations or embed-
dings, retain only the essential features or structures of the input data in
a lower-dimensional space. In unsupervised learning tasks, the model may
be trained to cluster, reduce dimensions, or in some other way recognize
patterns in the input data x;, thereby discovering inherent structures in the
data in an unsupervised way.

In reinforcement learning, a dataset is composed of sequences of ex-
periences, where each experience is defined as a tuple (x4, as, 7, 441), hence
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D = {(x, ar, 1, xe41) }o. Here, x, is the current state, a, is the action taken
by the agent in the state, r; is the reward gained through the action, and
x4 1s the subsequent state onto which the said agent transitions. In rein-
forcement learning, the goal is to learn a policy that maximizes cumulative
rewards over multiple time-steps based on interactions with the environ-
ment. This way, reinforcement learning can be seen to concern learning
through trial and error, unlike getting patterns from datasets, as in the
case of supervised /unsupervised learning. The agent keeps on communicat-
ing and learning through the environment, directed by the received reward
signals, in the manner in which learning takes place by reinforced signals.

The current thesis deals mainly with supervised and unsupervised learn-
ing, but another interesting milestone for future research may be carried out
by applying techniques from reinforcement learning to audio signal process-
ing.

This opens up a wide vista of new possibilities for performing such
tasks as adaptive noise cancellation, automatic audio enhancement, or even
creative applications such as real-time audio effects generation. An exam-
ple could be training an agent to optimize audio quality within dynamic
environments, learning in real-time how to adapt given changes in noise
conditions or user preferences.

This would also mean that the development of this direction includes
the integration of reinforcement learning frameworks with audio process-
ing techniques, and it can further result in systems capable of not only
responding to auditory input but also learning over time how to predict
and adapt to complex auditory environments. As reinforcement learning
continues to evolve and mature, combining it with audio processing opens
great opportunities for future research and practical applications.

To summarize, designing a learning-based approach requires four main
components:

m the dataset D, which is composed of input samples and, if necessary,

labels;

m the model g : X — )Y that performs the mapping from input to output
space;

m the loss function £ that permits to find the best solution ¢g* that
minimizes the empirical risk R(g);

m metrics that assess the performance of the model regarding general-
ization, i.e., on unseen data.
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2.3.3 Audio datasets

Depending on the task we want to solve, several audio datasets have been
published in recent years. With a focus on audio classification, Urban-
Sound8K [9] dataset comprises 8732 audio files of at most 4 seconds of
duration and divided into the following 10 different classes: air conditioner,
car horn, children playing, dog bark, drilling, engine idling, gun shot, jack-
hammer, siren and street music. As to the ESC-50 [10] dataset, it has 2000
short clips recorded at a sampling frequency of 44.1 kHz grouped into 50
classes of various common sound events: dog, rain, crying baby, door knock,
helicopter, rooster, sea waves, sneezing, mouse click, chainsaw, pig, crack-
ling fire, clapping, keyboard typing, siren, cow, crickets, breathing, door,
wood creaks, car horn, frog, chirping birds, coughing, can opening, engine,
cat, water drops, footsteps, washing machine, train, hen, wind, laughing,
vacuum cleaner, church bells, insects, pouring water, brushing teeth, clock
alarm, airplane, sheep, toilet flush, snoring, clock tick, fireworks, crow,
thunderstorm, drinking, glass breaking, hand saw.

TAU Urban Acoustic Scenes 2020 Mobile development dataset [11] was
proposed by Tampere University for research in the area of environmental
sound classification, including classifying urban areas. It includes 3600 10-
second audio recordings with a sampling rate of 44.1 kHz and was recorded
across various urban settings, from streets and parks to malls. Moreover,
this dataset contains recordings from different mobile devices, adding real
variations in the quality and conditions of the sound. Each recording is an-
notated with the label of the represented urban acoustic scene, thus support-
ing structured classification both for training and testing machine learning
models. Used in DCASE challenges, this dataset has driven the develop-
ment of audio-based environmental recognition systems under simulated
real variability.

However, as stated by machine learning theory with the VC dimension,
increasing the sample size permits training a larger model with an enhanced
ability to model more complex audio events. Therefore, researchers started
collecting larger and larger labeled audio datasets, with greater empha-
sis on the quality of labels. A major example is AudioSet [12], which is
a large-scale dataset curated by Google. It includes more than 2 million
human-labeled 10-second audio clips drawn from YouTube videos. Each
clip is annotated with labels from a hierarchical ontology of over 600 sound
categories that cover a very broad range of sounds, from everyday envi-
ronmental noises to animal sounds, human activities, musical instruments,
and many others. AudioSet is used by many as a resource for creating and
evaluating machine learning models for the detection and classification of
audio events and related tasks; AudioSet is therefore considered to be a



30 CHAPTER 2. BACKGROUND

benchmark for different kinds of applications in audio processing.

In the same direction, FSD50K [13] is a large-scale audio events dataset
intended for training and testing machine learning systems in the audio
event classification task. It consists of more than 50000 audio clips from
Freesound, an online collaborative dataset of creative-commons licensed au-
dio sounds. The audio is annotated with labels from the AudioSet ontol-
ogy, encompassing human activities, musical instruments, animal sounds,
and environmental noises. FSD50K has been used widely for benchmarking
and model development in various activities involving audio classification,
detection, and recognition.

In this thesis, in Chapter(, we propose an annotated audio dataset that
has been recorded in a public transportation environment. Specifically, since
no SED datasets for bus acoustics and anomalous events were available, we
designed the acquisition of background noise in the bus, together with the
injection of possible dangerous events to train a SED model in resource-
constrained environments.

2.3.4 Neural networks in sound event recognition

In this thesis, most of the models g € H used for Sound Event Recogni-
tion (SER) are ML classifiers and DNNs. From a mathematical point of
view, a learning-based model gy is parametrized by a set of weights 8 that
are optimized to minimize the empirical risk of the training set. ML clas-
sifiers typically employ hand-crafted features, such as MFCC, zero-crossing
rate, and other first and second-moment statistics for modeling and clas-
sification. However, they have been superseded by deep learning models.
DNNs, instead, usually use low-level representations, such as different forms
of spectrograms or even raw waveforms, instead of acoustic features used in
feature engineering [14].

In this regard, CNNs are neural networks deploying convolution oper-
ations instead of general matrix multiplication at least in one layer [15].
A cross-correlation function by sliding filters (kernels) over the input data
is performed through convolutional layers of a CNN, thereby producing an
output known as a feature map. CNNs avoid some of the limitations of prior
models, such as MultiLayer Perceptrons (MLPs) [15]. For instance, CNNs
allow for sparse interactions because kernels are smaller in size compared
to the input. This is in contrast to matrix multiplications involving inter-
actions of all input with all output units. Another characteristic feature
of CNNs is weight sharing, where each kernel weight is used at all posi-
tions of the input. This makes the processes far more efficient than a dense
matrix multiplication. Another implication of this weight sharing is that
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convolutional layers are equivariant to translation, meaning if a pattern in
a feature map shifts in the input, its corresponding feature map will also
shift similarly.

Generally, convolutional layers are combined with pooling layers, as
well as normalization layers (such as Batch Normalization [16]) and non-
linear activation functions (like Rectified Linear Units or the more recent
Exponential Linear Unit (ELU) [17]). Pooling layers serve to downsample
the feature maps, which reduces the dimensionality handled by the network
and enables deeper layers to integrate information over larger areas.

At the end of every CNN, the final layer is strictly related to the targeted
task. The softmax layer is required for multi-class tasks scenario, whereas
the sigmoid activation is employed for multi-label classification, which is
also known as tagging.

CRNNs are a class of CNN that have attached RNN layers, such as
Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), at
the end of convolutional layers to aggregate the extracted features over
time, thus modeling discriminative temporal structures. This type of DNN
has been employed in the realm of SED, as it is possible to both extract
class-wise features and identify the sound source in time.

An example of well-known 2D CNN for both audio classification and
tagging are the PANNSs [18], which require Mel spectrograms as input, thus
time-frequency representations. A famous 1D CNN is Wavenet [19], which
has been designed for audio generation tasks and classification exploiting
the raw audio signal in the time domain. Regarding CRNN| in [20,21] a
CNN with two GRU layers is proposed to perform SED.

Finally, Transformer-based methods have been recently used in recog-
nizing sound events due to their superior ability to capture long-range de-
pendencies in audio. Traditional methods involve a convolutional neural
network that, by design, operates locally. Transformers, however, use self-
attention mechanisms [22] for weighing the importance of each part of the
input sequence toward the goal of modeling global relationships. Trans-
formers in SER have been employed to process sequences of audio features
like Mel spectrograms, in which the mechanism of self-attention helps the
model pick out relevant sound events across time. That is particularly
helpful when the sound events are temporally dispersed or overlapping, sce-
narios difficult for a model such as CNN. Besides, transformers can han-
dle variable-length input sequences, which makes them flexible for different
tasks related to SER. A state-of-the-art Transformer-based audio classifier
is AST [23], which combines a CNN and the Transformer to extract features
and combine them in time, respectively.

It is important to highlight that PANNs and Transformer-based clas-
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sifiers are computationally expensive, thus, it is unfeasible to deploy these
models in resource resource-constrained environment, such as edge nodes in
a cloud architecture. In this thesis, we mainly design CNNs and CRNNs
as we focus on developing low-complexity learning-based models with low
training and inference times.

2.3.5 Loss function

As previously described, the selection of the loss function £ is fundamental
for the ERM procedure to find the best hypothesis/model gg. Similarly to
the dataset and the model, choosing the loss function depends on the task.

Generally, the cross-entropy loss L¢g is employed for audio classification
tasks. It corresponds to minimise the statistical difference between the
prediction of the model and the truth. Let y; € Z€ and y; = fo(z;) € R”
be the ground truth and predicted labels of a single audio sample x; using
the neural network fg, respectively. Then, the error for this sample is
computed as

c
lop, = — Y velog(d,) (2.25)
c=1
As deep learning models usually compute the error across batches, i.e., with
n samples at time, the error that is going to be propagated by means of the
back-propagation algorithm to correct the weights of the DNN is averaged
as follows

Lcr =E,llor,] (2.26)

In the case of multi-label classification problems, e.g., audio tagging,
the binary cross entropy Lpcg is used, following the same batch operation
of the cross-entropy

Lpce = En[lBCEi] = En[@/x Iny; + (1 - 3/1;) 111(1 - ZJz)] (2-27>

The next Chapters will also describe some variants of loss function related
to audio classification, such as ArcFace [24].

For regression tasks, such as distance estimation in Chapter 6 with
{yi,9;} € R, the most used loss function is the Mean Squared Error (MSE)

Lyvse = En[(yz - @1)2] (2'28)

as it has been shown that it maximizes the mutual information between
predicted and ground truth labels. However, other types of regression losses
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can be used, such as L, Huber loss, etc.

2.3.6 Performance assessment

Assessing the correctness of a model’s prediction is a critical step in the
machine learning field. Although some tasks have a straightforward as-
sessment of performance, for instance, an audio classification performance
is measured using the accuracy, some tasks require more complex and ar-
ticulated indicators. In the following, we provide the metrics used in this
thesis.

Audio classification

The validation of an audio classification system is usually based on the
accuracy score. More specifically, let TP be the number of true positives,
F'P be the number of false positives, F'N be the number of false negatives,
and TN be the number of true negatives. The classification accuracy is

evaluated as:
TP +TN

" TP+ FP+TN +FN’
which can be decomposed into Sensitivity (S;) and Specificity (S,):

Acc

(2.29)

TP

" TP+ FN’
TN

PTTN+FP

(2.30)

St

(2.31)

Inspired by the state-of-the-art [25], we discard T'N from Equation (2.29)

and we obtain:
TP

TP+ FP+FN’
To visually inspect the model’s prediction and to understand the type
of false positive errors, it is possible to employ the confusion matrix CF.

Specifically, it is a square matrix C' X C' in which the accuracy metric can
be obtained by

Acey = (2.32)

ACC — ZZCZI CF(Z7 7’)
i1 2050 CF (i)
where C' denotes the number of classes. It has been employed in Chapter 3

to inspect the number of correct and incorrect predictions made by the
model, broken down by each class, in a domain shift scenario.

(2.33)
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Anomalous sound detection

To evaluate the performance of a model in the unsupervised anomaly de-
tection task, two metrics are generally computed: the AUC and the pAUC,
where AUC describes an overall performance level for a binary classifier
with a tradeoff between the true positive rate and false positive rate for its
classification. In contrast, pAUC focuses on part of the Receiving Operat-
ing Curve (ROC) curve, specifically over a defined range of interest where
low false positive rates are critical. For this task, compute the pAUC over
the False Positive Rate (FPR) range [0, p].
The AUC and pAUC are mathematically expressed as:

N_ Ny

AUC = — Ag(z7)), (2.34)

zl]l

[pPN-] Ny

pAUC = LpN N > H(A(x]) — Ag(ay)), (2.35)

i=1 j=1

where |-| is the flooring function, and H(z) is the Heaviside step func-
tion that returns 1 in the case when x > 0 and 0 otherwise. In the above
formulae, {z; }, and {:L‘;_}j\/:l is the normal and anomalous test samples
respectively, that are sorted in descending order according to their anomaly
scores. Here, N_ and N, are the number of normal.

This method requires the anomaly scores of all normal test samples as
a threshold. It must, therefore, also necessitate anomaly scores of all test
samples rather than giving a binary decision output, as most practice goes
through. This way, it allows for a detailed assessment of the model in making
a classification between a normal and an anomalous sample, especially when
the false positive rate needs to be kept at a minimum level.

Anomalous Sound Detection (ASD) systems applied to the real world
are easily susceptible to a loss of credibility of their system if the rate of
false alarms is too high: the “boy who cried wolf” problem. Thus, when
operating at low FPR, it becomes of special importance to optimize True
Positive Rate (TPR). Since more weight is to be given to the low-FPR
portion of pROC, a pAUC with p = 0.1 is generally set.

In this Thesis, we employ these metrics in Chapter 4 to evaluate the
effectiveness of our anomaly detection method.

Sound event detection

At the moment, a rigorous quantitative evaluation of SED systems is still
not universally accepted by the research community. For this reason, the
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comparison between the output of the SED algorithm and the ground truth
is performed also on fixed length time intervals, thus measuring segment-
based metrics [26].

Segment-based metrics evaluate the system prediction and the reference
in fixed short time segments. Thanks to this activity representation, it is
possible to define intermediate statistics like TN, TP, FP, and FFN. To
evaluate the robustness of the system, an activity threshold ¢ is introduced
to the predicted activity matrix Y. In the following, we denote with loose
threshold the case 6 = 0.8 and with strict threshold the case with 6 = 0.9.
By applying one of the thresholds to the predicted activity matrix Y, the
resulting matrix is binary, and intermediate statistics can be evaluated.
Precision and Recall [27] are used for measuring the effectiveness of the
retrieval. For a generic i-th class event, the precision (P;) and recall (R;)
are evaluated as:

TP, TP,

P=—"— Ri=—7——". 2.
" TP +FP’ i TP, + FN; (2.36)

Then, class-wise Precision (P,.) and Recall (R,) are calculated by averaging
with respect to the number of class events Nuss:

Neiass Neiass

> P > R
i=1 i=1

where E[-] is the expected value. In addition, F-score can be derived as:

P.=E ., R.=E : (2.37)

_2.P-R

P ) 2.38
P, + R; (2.38)

In the literature, two types of averaging approaches for the F-score are
proposed [26].
We define the class-wise F, as the average of all the F'-scores:

F,=E (2.39)

We evaluate the audio-wise F-score F,, by calculating the precision P; and
the recall R; of a j-th audio recording (ignoring the class events).

Let Nguaio be the number of audio samples. Then, the metric is com-
puted as:

F,=E

Nau i0
SV2BR) (2.40)

by + R

i=1
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Furthermore, we use the Error Rate (ER) metric to account for the
number of wrong predictions in terms of substitution, deletion, and insertion
errors. More precisely, let k be a specific time-segment, with its intermediate
statistics (TP, T Ng, F' P, and F'Nj), in the j-th audio file with K time-
frames. We can define the errors as:

Sk = IIliIl (FNk,FPk),
Dk == max(O,FNk - Fpk),
Ik = maX(O,FPk - FNk)

The total ER of the j-th audio file is evaluated as:

K K K
ER. — Zk:l Sk + Zk:l Dy + Zk:l Iy
= .
> ket N

Finally, ER is averaged to the number of audio files in the validation set:

(2.41)

Naudio

> ER,

=1

ER=E . (2.42)

It is worth noticing that the ER is not a probability, so its value can be bigger
than 1. However, thanks to the use of the activity threshold ¢ and the fact
that a zero predicted activity matrix yields unit ER, all the approaches used
for comparisons have an ER lower or equal to 1.

Speaker distance estimation

The performance evaluation of distance estimators has been carried out
using the Mean Absolute Error (MAE) (£;) as the performance measure
for the entire test dataset

Li(y,9) = ly — 4, (2.43)

where the ground truth y € R and the prediction y € R are considered.
Additionally, the performance is assessed by calculating the MAE within
different distance ranges. This analysis allows us to quantify the relative
error of our model concerning source distance. We define the relative MAE
(rLy), which includes the real speaker distance in the evaluation, as follows:

Liw,d) _ly— 3l

rLyi(y, 1) =
19 9) y y

(2.44)
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For the sake of clarity and brevity, MSE has not been considered in the
performance evaluation.
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Chapter 3

Low-Complexity Acoustic
Scene Classification

3.1 Introduction

ASC is a subproblem in the domains of machine listening and audio signal
processing; its purpose is to automatically detect and classify the environ-
mental context or scene existing in an audio signal. Specifically, the objec-
tive is to identify the type of environment in which a sound was recorded,
such as airport, bus, metro, or other similar settings. The aim is to cor-
rectly classify the scene based on the signature and patterns that define
the unique auditory characteristics of every environment [28]. ASC can be

visually described in Figure 3.1.
Acoustic Scene :
[Illllll |||“|I|I Classification System [ Shopping mall ]

Input single-channel Output scene
audio classification

[ ]

Figure 3.1: Definition of the ASC task.

The audio data used in ASC are usually gathered from different places
covering several cities to obtain good sound coverage varying in their envi-
ronment. The recordings are made with a diversity of devices, each differing

39
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in quality and specifications. The diversity in data collection is very im-
portant in developing robust ASC models for generalization across different
acoustic conditions and device types [29]. The process of classification is
based on state-of-the-art algorithms analyzing acoustic features from au-
dio signals, which enable the system to distinguish scenes due to subtle
variations of sound patterns.

For real-world applications, a classification method for acoustic scenes
is expected to work in very diverse conditions, including audio captured
with different devices and as short as possible inference time. The first task
on low-complexity acoustic scene classification was defined in 2020 for only
three classes and a single device [30], for which many submissions obtained
very high performance.

This usually establishes several potential pitfalls to current systems in
the adaptation to quite different tasks of ASC under inhomogeneous record-
ing conditions, as the distributions of the data are unlike [29]. System adap-
tation must therefore be taken as a prime issue of high relevance in this field,
since measurements from many environments can barely fit into any rea-
sonable portable device to use, for example, adaptive noise cancellation in
headphones. With this background, the aim of this study is to design a
robust ASC system, which would adapt well with the variable recording
conditions in these cities and different devices.

The recording device’s resolution and the density in population, along
with the cultural factors and local infrastructure, greatly differentiate the
utilization of audio features used by ASC to derive the classes and, thus,
degrades the performance. These characteristics will make the feature dis-
tributions shift under different recording conditions, where each of those
conditions, like a city or a device, represents a different, distinct domain of
data. Accordingly, adapting a model trained on data from one set of cities
and devices to work on new cities and devices can be cast into a problem
of domain adaptation. The other approach could be an increased collec-
tion of heterogeneous data to overcome the problem of domain adaptation,
although, with an unpredictable test set, this would need a more strong
model design to work on the matter in hand.

The contributions of this Chapter can be summarized as follows:

m The use of Chebyshev moments is implemented for the first time in
the literature for audio classification in constrained hardware. Unlike
other image moments [31], Chebyshev moments are only defined on
a discrete set. Therefore, no approximations are required in their
implementation. Moreover, their property of symmetry drastically
reduces the amount of those moments, which are to be calculated,
hence reducing the computational time involved and making them
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suitable for real-time applications.

m A novel low-complexity neural network, which solely uses Chebyshev
moments to perform ASC with a lightweight CNN;, is devised. The pri-
mary advantage of this method lies in the processing, which is done
on the reduced-size CFD, which is obtained using the Fast Fourier
Transform (FFT) efficiently, and not on the larger Mel-spectrogram.
Performance is assessed through the average accuracy metric on two
challenging and widely studied datasets: UrbanSound8K [32] and
ESC-50 [33], with cross-validation.

m To overcome the domain shift problem, a further advanced deep learn-
ing approach with an attention module equipped with a learned time-
frequency representation, called Wavegram, is proposed. This module
allows the model to be attentive to only the most relevant features
in the input data, providing better adaptation to various conditions
of recording and the environment. Moreover, the use of Wavegram
representation allows to capture of more diverse and complex time-
frequency patterns, enhancing the feature set and making it more
robust and discriminative as compared to the traditionally used ones.

» A multi-iteration Fine-Tuning (FT) algorithm is defined to train the
model on the source domain, enhancing its generalization capabil-
ity. Finally, unlabeled data is leveraged in a semi-supervised man-
ner to further refine the model’s predictions. Performance is assessed
through the average accuracy metric on the IEEE ICME 2024 Grand
Challenge development dataset which focuses on the domain shift
problem.

3.2 Audio classification using Chebyshev
moments

Although MFCC features have been in use for a long time for audio classi-
fication, attention to Chebyshev moments can be justified by the probable
benefits it may offer. Although these moments proved effective in hand-
gesture classification in both image and radar domains [34, 35], to the best
knowledge of the authors, they have not been explored so far for the classi-
fication of audio signals. Contrary to other image moments [31], the Cheby-
shev moments are defined only on a discrete set; therefore, in their imple-
mentation, no approximations are needed. This fact, other than providing
accuracy, makes them highly suitable for real-time applications. Moreover,
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their intrinsic symmetry reduces the number of moments to be computed,
hence considerably reducing the overall computational time and making
them an efficient alternative for real-time audio classification tasks. In this
Section, a brief introduction of Chebyshev moments is presented, together
with the definition of a method to classify sound using the aforementioned
polynomials, MFCC, and a machine learning-based classifier. The overall
framework can be inspected in Figure 3.2.

Ee! M Mel- eyl CFD Chebychev
—_—

spectrogram > . moments
] computation B fi
Sound [n] computation extraction
a
recording Tolegetigine f
veetor —> Classifier
concatenalion
MFCC |
7| extraction f2 I

[ Class 1 ][ Class 2 ][ Class n ]

Figure 3.2: Definition of the method using Chebyshev polyno-
mials and MFCC using a ML classifier for the iden-
tification of sound sources.

3.2.1 Chebyshev polynomials and moments

Let f(x,y) be a non-negative real-defined image of size L x H. The moments
of order [+ h of f(z,y) are defined as its projection on the monomials z'y",
by means of the following integral [31]:

Mlh—//ac hf(z,y) dr dy. (3.1)

In general, the moments do not share orthogonality properties since
their generating monomials {x'y"} do not. This condition is, however ver-
ified for some widely used polynomials, e.g., Chebyshev [36]. More specif-
ically, Chebyshev moments can be derived as the projection of the image
f(z,y) on the related polynomials, as in Equation (3.1), to a discrete poly-
nomial set, that is:

L—

T

OM

Cin = o0 Dpln ) 2. a(z)en(y) f(z,y), (3.2)

T

being ¢;(x) the Chebyshev polynomial of order [ that can be written as
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T
i}

al@)en(x) = p(l, L), (3.3)

8
[e=]

with 0 <I<L—-1,0<h<H -1, and §;;, the Kronecker delta function
that is equal to 1 when [ = h and 0 otherwise. Moreover, p is the normalized
amplitude factor given by:

2, L) = p(i’f) — (21)! (2[2 I ll)% (3.4)

Next, the generalized hypergeometric function [37] of order (3, 2) is
introduced, that is

Fy(ay,a9,a3;b1,b9;2) = f (al)k(@)k(a?’)kz_k (3.5)
3472 \U1, w2, 43, v1, V2, e (bl)k(bQ)k L ) .
with (a), denoting the Pochhammer symbol [37] given by
['(a+1)
(a)l:a(a—i-l)u-(a—i—l—l)zw, (3.6)

where I'(2) = 0+O° t*~te~tdt is the gamma function. Finally, the Chebyshev
polynomials [36] can be expressed using the following equation

alx) =1 —L),3F (=, —z,1+1,;1,1 - L;1), (3.7)
where x =0,1,2,...,L — 1.

3.2.2 Feature extraction and classifier

The CFED is devised in [38,39] as an enhanced tool allowing to better distin-
guish micro-Doppler-based radar signals with respect to the use of the classic
spectrogram. It consists of a DFT applied to pass from a time-frequency
to a cadence-frequency domain. Performing a DFT of the spectrogram for
each frequency bin allows one to obtain the cadence information, that is, the
repetition cycle of each frequency involved in the original signal. As in [40],
the CFD is computed from the Mel spectrogram modulus with f = 64 filters
used in place of the spectrogram in [38,39], that is
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Alg, m] = Forr{Hva, {z[n]}} (3.8)
Nerp—1 '
= > |Hya, [k, m]le72HNer =0, Nppr,  (3.9)
k=0
where | - | denotes the modulus of its complex argument, £ is the ca-

dence frequency, Ncpp is the number of frequency bins used in the CFD
computation, and Nppr is the number of frequency bin involved in the Mel
spectrogram computation.

The extraction of the Chebyshev moments occurs through the projection
of the CFD into the orthogonal Chebyshev polynomials by means of

Nprr—1 Ncrp—1

Cin= c )| Ak, m 3.10
"7 5(1, Nerp)p(h, Noer) ; Z ! E) ALk, mll, (310

—_

with p the normalized amplitude factor, ¢;(-) and ¢,(-) the Chebychev poly-
nomial of order | and h. Finally, A(-,-) is the CFD normalized to be in the
interval [0, 1].

It is herein worth underlining that since the Chebyshev polynomials
only depend on the polynomial order (a priori set) as well as on Ncyp, they
can be a priori computed. This is compliant with real-time applications of
the proposed pipeline.

The feature vector obtained from Chebyshev moments f, is constructed
as

fi= [0007001a---7Cl,h]T- (3.11)

In addition, the MFCC are also extracted. In particular, they are ob-
tained as the amplitudes of the DCT of the logarithm of the Mel spectro-
gram. Then, the feature vector f, is constructed taking the mean value of
each MFCC over time, say MFCC, that is

f2 = [MFCC,, MFCC,, ..., MFCCy,,.] " - (3.12)

Then, the feature vector f used to train the classifier is obtained by
concatenation of the aforementioned feature vectors f; and f, as

F=1r (3.13)

Finally, the audio classification is carried out by machine learning-based
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classifiers such as KNN and RF.

3.2.3 Experiments

The effectiveness of the proposed architecture based on the joint exploitation
of both Chebyshev moments and MFCC to automatically distinguish among
different audio sources is assessed in this Subsection. Tests are conducted on
two publicly available databases, viz. UrbanSound8K [32] and ESC-50 [33].

Table 3.1: Mean classification accuracy (%) for each feature
set on the UrbanSound8K dataset using the 10-fold
cross-validation and two different classifiers, namely

KNN and RF.
UrbanSound8K [32]
KNN | RF
Baseline [32] 55.00 | 66.00
MFCC 37.82 | 50.91
pseudo-Zernike order 20 [41] 38.39 | 60.05
Chebychev order 10 37.37 | 63.65
Chebychev order 20 37.70 | 62.13
Chebychev order 10 + MFCC (ours) | 40.40 | 68.55
Chebychev order 20 + MFCC (ours) | 40.10 | 67.35

Then, to assess the performance of the proposed framework, a 10-fold
and 5-fold cross-validation is applied on the UrbanSound8K and ESC-50
datasets, respectively. As to the classifier, both a KNN with the parameter
k set equal to 11 and a RF with 500 trees are used. The settings of classifiers
are the result of a grid search over a finite set of hyperparameters. Results of
tests on UrbanSound8K [9] and ESC-50 [10] are reported in terms of average
accuracy in Table 3.1 and Table 3.2, respectively, for the proposed algorithm
considering two different values for the moments order, i.e., 10 and 20. For
comparison purposes, the results obtained applying other feature sets on
both UrbanSound8K and ESC-50 classification are also reported, such as
MFCC and Chebyshev moments of order 10 and 20, separately.

On the UrbanSound8k dataset, we obtain the best performance using
Chebyshev moments of order 10 in conjunction with MFCC. Specifically,
the KNN classifier achieves an accuracy of 40.40%, whereas for the RF,
it reaches 68.55%. On ESC-50, which has a smaller number of samples
with lots of classes, the effectiveness of the proposed framework can also
be appreciated in terms of its discriminative capabilities. The proposed
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Table 3.2: Mean classification accuracy (%) for each feature
set on the ESC-50 dataset using the 5-fold cross-
validation and two different classifiers, namely KNN

and RF.
ESC-50 [33]
KNN | RF
Baseline [33] 32.20 | 44.30
MFCC 18.15 | 31.60
pseudo-Zernike order 20 [41] 17.85 | 40.50
Chebychev order 10 13.45 | 45.05
Chebychev order 20 13.80 | 42.45
Chebychev order 10 + MFCC (ours) | 16.85 | 52.15
Chebychev order 20 + MFCC (ours) | 15.00 | 50.30

method allows to reach an accuracy of 16.85% with the KNN and 52.15%
with the RF.

It is worth noting that the RF classifier consistently outperforms KNN
across all feature sets, suggesting that it is better suited for this task or
dataset. In addition, combining Chebyshev moments and MFCC yielded the
best performance in both datasets, demonstrating the effectiveness of the
proposed feature set. Chebyshev features, particularly when combined with
MFCC, significantly enhance performance, highlighting their usefulness in
this context.

3.2.4 Summary

In this Section, an architecture based on a machine learning approach is
devised and analyzed to automatically discriminate different audio signal
sources. The proposed framework is based on a concatenation of two differ-
ent feature vectors. The former is obtained as the Chebyshev moments ex-
tracted from the CFD that is, in turn, obtained from the Mel-spectrogram
of the incoming audio, and the second comprises the well-known MFCC.
Hence, the proposed procedure has a low computational complexity thanks
to the symmetry property of the discrete Chebychev moments as well as the
fast computation of the CFD with the FFT algorithm. Tests conducted on
UrbanSound8K and ESC-50 datasets have shown interesting results demon-
strating the effectiveness of the proposed pipeline.

Although the performance demonstrates the effectiveness of using Cheby-
shev polynomials in constrained, there is still a significant gap between the
machine learning-based approach and state-of-the-art in terms of mean clas-
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sification accuracy, e.g., PANNs [18]. Hence, the next Section will focus on
the design of a deep learning-based method employing only Chebyshev mo-
ments with improved performance and contained resource requirements.

3.3 Lightweight Convolutional Neural
Network using Chebyshev Moments

Even though machine-learning models provide complete control of the ex-
tracted features and a limited computational complexity, each specific pro-
cedure requires strong theoretical expertise on the application field and
difficulties in generalizing the developed methods. Conversely, deep learn-
ing has the advantage of being more generally applicable with also higher
classification performance. These results are, however, often paid in terms
of a higher computational burden and the need for the availability of many
data to train the network.

The main features of these two competing strategies are exploited to
take advantage of the strengths of both and limit their weaknesses. To this
aim, a FCN is designed, which encompasses two convolutional branches for
extracting features from the CFD representation and the Chebyshev mo-
ments coefficients, respectively. Hence, the proposed pipeline’s first branch
consists of a few convolutional layers alternating with max-pooling layers
that apply a proper transformation of the input CFD.

The main advantage of the proposed framework lies in its limited compu-
tational complexity. The processing is performed on the reduced size CFD
(efficiently obtained using the FFT) rather than the wider Mel-spectrogram.
Additionally, the Chebyshev polynomials can be a priori computed and
stored since they only depend on the polynomial order and the CFD size.
Beyond the above attentions, the developed 2D FCN is characterized by
a few layers with also a very low number of parameters if compared with
SOTA architectures.

Performances have been assessed in terms of the average accuracy of
performing cross-validation on two widely investigated datasets, namely Ur-
banSound8K and ESC-50. Results show the effectiveness of the proposed
approach in comparison with other existing state-of-the-art approaches with
higher computational complexity.

3.3.1 Proposed Approach

Let g(+)g : RNcroxNerp y RNclasses he the FCN parametrized with weights
0 that processes the CFD representation obtained from Equation (3.8) and
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Figure 3.3: Examples of Mel-spectrogram, CFD with Noyp =
32, and Chebyshev moments with [ = 10 from two
audios of the ESC-50 dataset.

predicts the vector of class probabilities, also denoted as class logits, y €
RNetasses Specifically, g(-)p encompasses two neural branches (gcrp, and
JCheb,) that are responsible for processing the CFD and the Chebyshev
moments, respectively.

In more detail, the branch gepp, (+) : RNcrpxNerp —y RNeiasses consists of
three convolutional blocks, labeled as ConvBlock(C;), where C; represents
the number of output channels. These blocks are used for extracting spatial
features from the 2D representation. FEach block performs a 2D convolution
with 3 x 3 kernels, followed by batch normalization [16] and the activation
function called ELU [17], which is defined as

z, x>0

ale®—1), =<0 (3:14)

ELU(x) = {

where « is set to 1 to avoid negative values saturation. After the first two
blocks, an image downsampling process is performed using the MaxPool(2, 2)
function. Then, a linear projection layer is employed to transform the out-
put of the final convolutional block into a feature tensor with several chan-
nels equal to the number of classes Nasses. The idea is to have a feature
map for each class. To this aim, a 1 x 1 convolutional layer is utilized.
Finally, class logits ¥opp € RMeasses are obtained by means of the Global
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Average Pooling (GAP) operator.

In parallel, the branch gcpen, (-) : RNcrpxNerp s RNclasses extracts the
Chebyshev moments from the normalized CFD and provides the class logits
Vone, € RVetasses . First, Chebyshev moments are extracted from the CFD
following the procedure detailed in Section 3.2.1. Then, the coefficients are
arranged in a squared matrix of size (I 4+ 1) x (I + 1) to be processed by the
network gcneb (+)-

Regarding the architecture of the Chebyshev branch, it is composed of
2 consecutive ConvBlock with 32 and 64 filters with size 3 x 3. Similarly
to gcrp, (), a linear projection layer reduces the number of feature maps to
the number of classes, and the GAP layer maps to class logits.

Table 3.3: Description of the proposed 2D FCN.

Input: normalized CFD A € RNorpxNorp

CVD branch gcrp, (+) Moments branch gcneb, ()
ConvBlock(128) Chebychev moments extraction of order Nepep
MaxPool(2, 2) ConvBlock(16)
ConvBlock(128) ConvBlock(64)
MaxPool(2, 2) Projection to Ngjasses channels
ConvBlock(128) GAP(-)
Projection to Njagses channels -
GAP(-) -
Output: class logits ¥cpp ‘ Output: class logits ¥cpen

Finally, the prediction of the approach § € RNeasses is computed by
element-wise multiplication, denoted as ®, between the two branch estima-
tions as a soft-voting strategy

Y =Ycrp @ ¥Ycheb- (3.15)

This training procedure has been applied to provide coherence between the
two proposed audio representations. The architecture is trained by means
of the Cross-Entropy loss Lcg between the predicted and the ground truth
labels.

Table 5.1 provides a comprehensive overview of the architecture of the
FCN. The whole neural network configuration has been tuned by exploiting
a hyperparameter grid search optimization.

3.3.2 Experiments

To assess the performance of the proposed framework, a 10-fold and 5-
fold cross-validation is applied to the UrbanSound8K [32] and ESC-50 [33]



50 CHAPTER 3. LOW-COMPLEXITY ACOUSTIC SCENE CLASSIFICATION

datasets, respectively. The performance on these datasets is assessed using
the accuracy metric, evaluating the number of perfect matches between
predicted and ground truth labels.

Table 3.4: Mean classification accuracy with 95% confidence in-
terval on the UrbanSound8K dataset using the 10-
fold cross-validation.

UrbanSound8K [32]

Accuracy
Baseline 0.66

CFD Mell6 + order 10 0.72 £0.05
CFD Mell6 + order 15 0.73 £0.07
CFD Mell6 + order 20 0.67+£0.11
CFD Mel32 + order 10 0.72 +0.06

CFD Mel32 + order 15 | 0.73 = 0.05
CFD Mel32 + order 20 0.67 £ 0.09
CFD Mel64 + order 10 0.73 £0.06
CFD Mel64 + order 15 0.72 £0.06
CFD Mel64 + order 20 0.71 £0.06

The performance of the proposed approach on UrbanSound8K and ESC50
is depicted in Table 3.4 and Table 3.5, respectively. The best results, which
outperform the baselines, are obtained when the CFD is computed from the
spectrogram with 32 mel bins. Moreover, it is notable that the best order of
Chebyshev moments depends on the scenario and the amount of available
data. In fact, with a smaller dataset, i.e., ESC50, the best performance is
observed with a greater number of Chebyshev coefficients than in the case
of a larger dataset, i.e., UrbanSound8k.

Moreover, it is worth highlighting that the experiments have been car-
ried out only with the Mel spectrogram. Even though the approach is ag-
nostic concerning the audio representation, tests conducted on other time-
frequency analyses, such as STFT and MFCC, yielded non-converging train-
ing procedures.

Table 3.6 depicts the performance and the computational complexity
(for the number of learnable parameters) of well-known deep learning strate-
gies, e.g., CNNs [18,42] and Transformers [23], for audio classification with-
out the use of additional training data such as AudioSet [12]. It is notable
how the proposed approach is three orders of magnitude lower than well-
known state-of-the-art models for sound recognition. Since the Chebyshev
polynomials only depend on the polynomial order as well as on Ngyp, they
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Table 3.5: Mean classification accuracy with 95% confidence in-
terval on the ESC50 dataset using the 5-fold cross-
validation.

ESC50 [33]

Accuracy
Baseline 44.30

CFD Mell6 + order 10 0.59 £+ 0.05
CFD Mell6 + order 15 0.58 £ 0.02
CFD Mell6 + order 20 0.60 = 0.03
CFD Mel32 + order 10 0.57 £ 0.04
CFD Mel32 + order 15 0.59 £+ 0.06

CFD Mel32 + order 20 | 0.62 + 0.05
CFD Mel64 + order 10 0.58 £0.04
CFD Mel64 + order 15 0.60 £ 0.04
CFEFD Mel64 + order 20 0.57 £0.02

can be a priori computed. This is compliant with real-time applications of
the proposed pipeline.

Moreover, regarding the computational complexity of deep neural net-
works, as explained in [43], having a smaller number of learnable parameters
can help mitigate the risk of overfitting, especially when dealing with small
datasets. Overfitting occurs when the model becomes too complex and
starts to memorize noise or outliers in the training data. A simpler model
with fewer parameters is less prone to overfitting. Additionally, with fewer
parameters to update, the optimization process requires less computational
resources and time. This can be advantageous when working with limited
computational capabilities or large datasets [43].

In addition, thanks to the CFD computation, the size of the input fea-
ture is lower than canonical time-frequency representations such as STFT
and Mel-spectrogram. In fact, the configuration of the proposed approach
that yields the best results encompasses a CFD of size 32 x 32. Instead,
without this domain shift, a canonical time-frequency analysis that com-
putes the same preprocessing yields a 32 x 64 spectrogram, increasing the
overall forward step of neural networks.

However, a drawback of this approach is the loss of the time information.
Performing a DFT for each frequency bin in the Mel-spectrogram produces
a new frequency-cadence domain, in which the cadence provides information
about the amount of repetition of each frequency within the observed signal
for all the observation time. Therefore, the original time information is
integrated and hence is somehow lost when the second DFT is applied.



52 CHAPTER 3. LOW-COMPLEXITY ACOUSTIC SCENE CLASSIFICATION

Table 3.6: Study on the computational complexity and perfor-
mance of the proposed approach with CFD on 32-bins
Mel-spectrogram in comparison with state-of-the-art
architectures. We denote with 1 when the perfor-
mance is better when the metric is high and | oth-
erwise. A dash symbol means no experiments have
been provided by the authors.

Model | Params (M) | | Acc ESC50 1 | Acc USKS 1
CNN-based
CNN14-PANN [18] 81.06 0.83 0.79
AemNet [42] 14.40 0.77 0.77
Transformer-based
AST [23] | 8810 | 087 | -
Proposed FCN \ 0.32 \ 0.62 \ 0.73

3.3.3 Summary

In this Section, a new architecture that employs the CFD and the Cheby-
shev moments for the classification of environmental sound is presented.
Specifically, a low-complexity learning-based approach is designed for ex-
tracting features and classifying audio from a novel feature set. However,
as mentioned in the discussion, the employed representation loses time in-
formation, making the architecture not suitable for tasks where time-wise
classification is required, such as SED [44]. A possible improvement is to
compute the CFD and Chebyshev pipelines on sliding windows of the start-
ing time-frequency representation. By doing so, it is possible to evaluate the
features in a time-aware fashion. In conjunction, the employment of more
advanced attention-based architecture, such as ViT [22,45], and large-scale
audio datasets, such as AudioSet [12], could improve the effectiveness of the
proposed approach while always keeping an eye on the computational cost.

3.4 Tackling the Domain Shift

Domain shift is a critical problem in ASC where models trained on one set
of audio conditions underperform when tested on different acoustic environ-
ments, for example, trained on advanced recording systems and tested on
Commercial-off-the-shelf (COTS) devices [46] and vice versa. An example
of the domain shift problem is presented in Fig. 3.4, where an ASC system
is trained and tested using different natures of audio recordings from differ-
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Figure 3.4: Example of the domain shift problem in the context
of the IEEE ICME 2024 Grand Challenge.

ent factors, e.g., time, space, and culture. In [46], the authors proposed an
unsupervised domain adaptation method that aligns the first- and second-
order statistics of all the frequency bands of target-domain acoustic scenes
to the ones of the source-domain training dataset. However, there is a lack
of methods that exploit large portions of unlabeled raw data to improve the
supervised training of deep learning models. A recent study introduced a
multi-target domain adaptation technique focusing on reducing the domain
gap by treating domain shift as a measurable distance [47].

To tackle the domain shift issue, a deep learning approach is proposed
based on an attention module and a learned time-frequency representa-
tion, namely Wavegram. Then, a multi-iteration FT process is devised to
train the model on the source domain to improve its generalization ability.
Finally, unlabeled data is used in a semi-supervised fashion to refine the
model’s predictions.

3.4.1 Proposed Approach

Initially, a pre-processing stage is used for extracting the complex STFT
STFT{x} from the single-channel audio signal x[n]. This transform is per-
formed using a Hann window of duration 32 ms with 50% overlap. Next,
a log-Mel spectrogram Xy € R/ is extracted by using a Mel filterbank
Hya{-} as follows:

Xyt = 201og,o Hye {STFT{x}}, (3.16)

where t and f denote the number of time and frequency bins, respectively.
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Figure 3.5: Proposed approach for semi-supervised classifica-
tion of ASC.
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Figure 3.6: Example of acoustic features X and corresponding
attention maps H = fapr(X) for a Construction
site audio recording. The first row depicts the log-
Mel spectrogram and the Wavegram, respectively.
The second row shows the attention maps that are
element-wise multiplied with the acoustic features
to obtain X.

In [18], Wavegram is introduced as a new learned time-frequency rep-
resentation for audio tagging. In particular, it is designed to capture time-
frequency patterns that are generally lost during the extraction of hand-
crafted filterbanks, e.g., Mel spectrograms [18]. Several methods have been
based on Wavegram by applying a 1D convolution that acts as a learnable
STFT [48-50]. Next, the features were further processed by layer normaliza-
tion and 1D convolutions with 3 x 3 kernels [49,50]. To reduce the computa-
tional complexity, Wavegram consists only of a separable 1D convolutional
layer with f = 128 filters with 1024 neurons each. To mimic the windows’
overlap in the STFT computation, stride and padding of 512 samples are
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applied. The output of the Wavegram is denoted as Xyyayve € R/,
Finally, the log-Mel spectrogram and the output of Wavegram are con-
catenated along the channel dimension:

X = [XMelaXWave] € RtXfX% (317)

The attention module is devised to construct an attention map H €
R*/*2 ytilizing both the log-Mel spectrogram and the Wavegram, similar
in [51]. Its objective is to highlight the most significant regions of features
for the task of classification. This module is represented as: fapp : R¥*/*2 —
R¥*F*2 Tt encompasses two separable convolutional blocks with 16 and 64
filters of size 3 x 3, sequentially. Following these blocks, a convolutional layer
of 1 x1,i.e., a projection layer, is applied, and a sigmoid activation function
maps each pixel to a probability, thus producing a t x f x 2 attention map.
The enhanced acoustic features X € R™/*2 result from the element-wise
product (®) of the time-frequency representations and the attention map,
defined as

X = farr(X) ® X. (3.18)

An example of log-Mel spectrogram, Wavegram, and their attention
maps is depicted in Fig. 3.6. In the given example, it is notable that the
attention model primarily concentrates on time-frequency patterns and the
lower frequency bands within the log-Mel spectrogram. Conversely, the
Wavegram provides a semantic representation of time and frequency that is
specific to each acoustic scene.

The classification layer we employ is ArcFace [24], which combines the
cross-entropy loss with the requirement of features to be distributed on a
hypersphere with respect to their labels:

. 5 cos (6+my)
ﬁAF(Oa y) =Yy 27?:1 s cos (05+m,;) (319)
where the vector of angles @ = [01,0,,...,0.] corresponds to each class

and is derived by computing #; = arccos(w! h), reflecting the correlation
between the features classified as h € R"*! and the ArcFace weights learned
as w; € R™! for the i-th class. The constants s € Rt and m € RT denote
the scaling and margin coefficients for the ArcFace loss, respectively.

Initially, the model is pre-trained on the TAU Urban Acoustic Scenes
2020 Mobile development dataset [11], similarly to the baseline provided by
the organizers [52]. This stage involves adjusting the model’s weights to
recognize sound patterns and features of the urban scenario.

Then, multiple F'T iterations are performed on the labeled development
dataset of the Grand Challenge. In this work, a F'T iteration consists of



56 CHAPTER 3. LOwW-COMPLEXITY ACOUSTIC SCENE CLASSIFICATION

TAU Mobile Dev ICME GC 2024 Dev

Lelbeilied ( )
O .

. 4
Pretrain Acoustic Scene

Classification System
N

Unlabelled @

Fine-tuning
ICME GC 2024 Eval
Dataset

fnference @

Figure 3.7: Dataset and proposed semi-supervised pipeline.

removing the last classification layer, i.e., ArcFace [24], and keeping the
model’s weights. This iterative process helps the model to adapt to specific
tasks, handle class imbalances, and enhance its ability to generalize to new
data. It also offers insights for further model refinement, making the final
model more suited to real-world applications [53].

3.4.2 Experiments

The 2023 Chinese Acoustic Scene (CAS) [52] dataset is an extensive re-
source foundational to studies on environmental acoustic scenes, containing
10 scenes with a collective length of more than 130 hours. Each of the
dataset’s 10-second sound clips is accompanied by metadata detailing its
recording location and time. Derived from the CAS 2023, the dataset for
the ICME 2024 challenge includes development and evaluation parts. The
evaluation comprises 1,100 recordings chosen from 12 cities, incorporating
5 cities not previously included to enrich the evaluation process for domain
shift scenarios. Due to the nature of the challenge, we randomly split the
development dataset into training, validation, and testing sets using a per-
centage ratio of 80%-10%-10%, respectively.

TAU Urban Acoustic Scenes 2020 Mobile development dataset [11] is
used to pre-train the proposed model. The dataset encompasses recordings
from 12 European cities across 10 distinct acoustic scenes, captured with
4 different devices. Moreover, synthetic data was generated for 11 mobile
devices, drawing on the original recordings. Two of the 12 cities are exclu-
sively included in the evaluation set. The overall length of the dataset is 64
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hours. Training, validation, and testing have been carried out following the
official splits provided by the organizers of the challenge.

For both CAS 2023 [52] and TAU Urban Acoustic Scene (UAS) 2020 [11],
we follow the authors where accuracy is employed to assess the performance
of models.

In this work, the sampling frequency is set to fs = 16 kHz to reduce the
computational complexity of the approach. The classifier at the end of the
DNN is MobileFaceNet [54]. The number of trainable parameters is 874Kk,
highlighting the low-complexity characteristic of the approach. Regarding
the training and FT procedure, the model is trained for 100 epochs with
batches of size 32. A cosine annealing learning rate is employed with an
initial learning rate 1y = 0.001 with a maximum number of steps Ti.c =
100. Pytorch-Lightning and Weights&Biases are utilized for training and
logging, respectively. ArcFace’s scale and margin coefficients are set to s = 8
and m = 0.2, respectively, following [24]. The number of FT iterations on
the labeled ICME 2024 development dataset is set to 3 since no improvement
in the validation loss has been observed.

Fig. 3.8 reports the confusion matrix of the proposed approach on the
TAU Urban Acoustic Scenes 2020 Mobile dataset. Overall, the model
achieves an average accuracy of 45.5%, which is consistent with the per-
formance of architectures that are not ensembles of models [11], following
the rules of the ICME 2024 Grand Challenge.
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Figure 3.8: Confusion matrix of the proposed approach on TAU
Urban Acoustic Scenes 2020 development dataset.

Table 3.7 shows the performance of the proposed approach with several
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Table 3.7: Comparison of several training setups for test accu-
racy. All the results are in percentages.

Approach \ Acc
from scratch 63.8
1 FT iteration 97.7
2 FT iterations 98.3
3 FT iterations 99.4

3 FT iterations + unlabelled dataset \ 100.0

training setups. Training from scratch yields the worst performance with an
average accuracy of 63.8%. Instead, pretraining on the TAU Urban Acoustic
Scenes 2020 improves the generalization ability of the model.
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Figure 3.9: Confusion matrix of the proposed approach on
ICME 2024 Grand Challenge test set dataset be-
fore exploiting the unlabeled dataset.

Moreover, the multi-iteration F'T process further enhances the perfor-
mance, achieving a remarkable 99.4% of accuracy on the test set, as can
be inspected from the confusion matrix in Fig. 3.9. With the addition of
the unlabeled dataset in the F'T, the proposed approach achieves optimal
classification performance, showing a diagonal confusion matrix in Fig. 3.10.

The proposed approach on the evaluation dataset achieved an accu-
racy of 63.1%, improving the performance of the baseline by 3.1%, as can
be inspected in Table 3.8. Compared to the baseline, which employs a
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Figure 3.10: Confusion matrix of the proposed approach on
ICME 2024 Grand Challenge test set dataset af-
ter exploiting the unlabeled dataset.

Table 3.8: Comparison of performance between proposed ap-

proach and baseline on the evaluation set. All the
results are in percentages.

Approach Acc | Bus Airport Metro Restaurant Shopping mall Public square Urban park Traffic street Construction site  Bar
Baseline 60.0 | 40.0 54.7 90.0 69.0 51.0 29.0 46.0 65.0 68.0 87.0
Our approach | 63.1 | 42.0 80.0 98.0 60.0 69.0 28.0 58.7 74.0 61.0 60.0

transformer-based model, our approach utilizes a CNN, thereby offering a
more lightweight solution.

3.4.3 Summary

In this Section, a semi-supervised learning approach for ASC that addresses
domain shift is proposed for the IEEE ICME 2024 Grand Challenge. Thanks
to an attention-based CNN; a learning-based time-frequency representation,
and an iterative FT process, our model demonstrated optimal performance
on the development dataset of the challenge. On the evaluation set, our
methodology gained the fifth position in the competition, outperforming
the baseline and providing a low-complexity trade-off. Future works will

be focused on involving augmentation strategies in either the pretraining or
the finetuning procedure.
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3.5 Conclusion

The content of this Chapter is associated with the following publications:

s L. Pallotta, Michael Neri, M. Buongiorno, A. Neri, and G. Giunta,
“A Machine Learning-Based Approach for Audio Signals Classification

using Chebychev Moments and Mel-Coefficients”, in: International
Conference on Frontiers of Signal Processing (ICFSP), 2022 [40].

s Michael Neri*, L. Pallotta, and M. Carli “Low-Complexity Environ-
mental Sound Classification using Cadence Frequency Diagram and

Chebyshev Moments”, in: International Symposium on Image and
Signal Processing and Analysis (ISPA), 2023 [55].

s Michael Neri* and M. Carli, “Semi-Supervised Acoustic Scene Clas-
sification under Domain Shift using Attention-based Separable Con-
volutions and Angular Loss”, in: IEEE International Conference on

Multimedia and Expo Workshops (ICMEW), 2024 [56].

m Michael Neri, “Anomaly Detection and Classification of Audio Sig-
nals with Artificial Intelligence Techniques”, in: Science Talks, 2024 [57].



Chapter 4

Unsupervised Sound Anomaly
Detection

4.1 Introduction

Until now, in this Thesis, the developed models perform audio classification
using the presence of labels, i.e., in a supervised fashion. However, several
audio challenges are intrinsically unsupervised.

In many real-world scenarios, labeled data is hard to come by, expen-
sive, or impossible to acquire. For instance, in industrial environments,
the detection of anomalies in machine sounds and the detection of unusual
patterns in environmental noise are common problems that one encounters
with vast amounts of unlabeled data [58]. Supervised learning methods
have exceptionally high performance regarding accuracy with large labeled
datasets; however, their applicability in such contexts is greatly limited.

UASD overcomes these limitations by focusing on the identification of
deviations from normal behavior but without the need for labeled training
data. In place of learning from predefined categories, the model will learn
the underlying distribution of normal sound patterns and flag whatever in-
stances deviate farthest from this learned distribution as probable anoma-
lies. This type of approach is much appreciated in different applications,
like predictive maintenance, security surveillance, and health monitoring,
where the detection of rare and unpredicted events is useful.

In the context of unsupervised anomaly detection, an anomaly refers to
data patterns that deviate from the expected normal behavior [59]. Like-
wise, ASD is the task of understanding whether a sound is normal or not
(anomalous) [49], as can be visually inspected in Fig. 4.1.

61
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Figure 4.1: Definition of the binary sound anomaly detection
task.

The UASD challenge lies in correctly modeling what constitutes nor-
mal behavior in extremely variable and dynamic acoustic environments.
The sounds could vary greatly because of operational state changes, en-
vironmental noise, and other factors [58, 60]; therefore, a stable baseline
cannot be easily established for normality. Further, the notion of what is
an anomaly is generally context-dependent, which serves to intensify task
difficulty.

UASD is applied in the field of machine condition monitoring [58,60],
medical diagnosis [61], safety and security in urban environments [62], and
multimedia forensics [63,64]. Generally, DNNs are employed for ASD due to
their ability to identify subtle and unknown anomalous data patterns [65].
Unsupervised or semi-supervised models are generally adopted in ASD prob-
lems because of the limited availability of anomalous sounds. SOTA UASD
approaches can be classified into two categories [66,67]: reconstruction-
based and classification-based. In the first scenario, models are based on the
hypothesis that only non-anomalous samples, which have been analyzed
during training, can be effectively retrieved after lossy compression, e.g.,
Autoencoder (AE) [68]. In [69], a DNN has been designed to interpolate
masked time bins of the log-Mel spectrogram. Similarly, in [70], normaliz-
ing flows have been used for estimating the probability density of normal
data. However, these models suffer from generalization problems, e.g., an
anomalous sample may be correctly reconstructed by an AE [71].

(Classification-based approaches, instead, compute the anomaly score ex-
ploiting probability-based distances between prediction and ground truth,
e.g., cross-entropy. The classification is carried out on metadata, which
can be the identification number of a specific machine that produced the
sound. The design rationale is that a model cannot successfully classify
the metadata associated with a sound if it is anomalous [66,67,72]. The
use of metadata as an auxiliary loss function allows the modeling of the
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probability distribution of normal data, namely Inlier Modeling (IM) [73].
One such model, STgram-MFN [48], extracts temporal and spectral fea-
tures to classify the IDs of machines using ArcFace [24]. Similarly, in [50],
two novel angular losses, ArcMix and Noisy-Arcmix, have been designed to
enhance the compactness of intra-class distribution during the classification
of IDs. Differently, the authors in [74] involved contrastive learning in the
pre-training to reduce distances between pairs of feature embeddings from
the same machine IDs.

However, it is important to consider the computational complexity in
the context of UASD. The response time of an anomaly detector may be
critical to limit the damage caused by an anomalous event [68]. Hence, this
work also analyzes the computational complexity of SOTA approaches in
terms of the number of learnable parameters. Moreover, it is often challeng-
ing to interpret why these models flag certain audio segments as anomalies
due to their black-box nature. To address this issue, for the first time in
the literature, we employ an attention module [51] to provide explanations
for the decisions made by the anomaly detection system. The attention
mechanism highlights which parts of the input are most influential in the
model’s anomaly detection, thereby enhancing the interpretability of the
model’s outputs.

The contributions of this Chapter can be summarized as follows:

m Definition of an attention module focused on identifying time-frequency
anomalous pattern detected both in the log-Mel spectrogram and from
the learned representation, i.e., Wavegram [18].

m Use of separable convolutions to reduce the computational complex-
ity of the model, decreasing by approximately 13% of the number of
learnable parameters concerning the top-tier approaches of the litera-
ture;

m Statistical analysis of the attention maps highlights the importance
of high-frequency bins in the log-Mel spectrogram as the main cue
for the identification of anomalous sounds in this scenario. Moreover,
a comparison with SOTA approaches, in terms of performance and
computational complexity, is carried out.

4.2 Proposed Anomaly Detector

The goal is to determine whenever a single-channel audio signal z[n] is
anomalous without using in training the binary anomaly label y € Z2?. To
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Figure 4.2: Description of the proposed pipeline for UASD.

do so, we employ time-frequency representations as features, namely log-
Mel spectrogram and Wavegram, to jointly identify patterns in time and
frequency since audio signals are generally non-stationary [14]. In conjunc-
tion with an attention module and angular loss, an efficient DNN is proposed
for classification-based anomaly detection. The overall architecture is shown
in Figure 4.2.

Initially, a pre-processing stage is employed to extract the complex
STFT STFT{x[n]} from the audio signal x[n]. This transform is performed
using a Hann window of length 64 ms with 50% overlap. The selection of
the window function is critical since windowing in the time-domain results
in a convolution in the frequency domain, disrupting the spectral charac-
teristics of the audio signal. Hann window mitigates this problem thanks
to its characteristic of having the localization of spectral energy around the
normalized frequency w = 0, minimizing spectral leakage [75]. The length
and overlap of windows are consistent with those found in the literature
for ASD. To enhance time-frequency patterns and as previously done in
Chapter 3, a log-Mel spectrogram Xy € R/ is extracted using a Mel
filterbank Hyger,{-} as Xuer = 201log;g Hyer, (STFT{x([n]}), where ¢ and f
denote the number of time and frequency bins, respectively.

In [18] Wavegram is introduced as a new learned time-frequency repre-
sentation for audio tagging. In particular, Wavegram is designed to capture
relevant time-frequency cues for the classification that may go unnoticed,
like hand-crafted log-Mel spectrograms, due to its lossy representation [18].
Within the scope of UASD, several methods have been based on Wave-
gram by applying a 1D convolution that acts as a learnable STFT [48].
Next, the features have been further processed by layer normalization and
1D convolutions with small kernel sizes [49,50]. To reduce the computa-
tional complexity, in this work, Wavegram consists only of a separable 1D
convolutional layer with f strided filters to mimic the windows’ overlap in
the STFT computation. Finally, the log-Mel spectrogram and the output
of Wavegram Xwawe € R™/ are concatenated along the channel dimension
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X = [Xnel, Xwave] € R>*2 An example of input acoustic features is
depicted in Figure 4.3.

Mel Spectrogram Wavegram
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Figure 4.3: Example of acoustic features Xy and Xwave, re-
spectively, from an anomalous sound of Task 2
DCASE 2020 dataset.
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Figure 4.4: Attention maps H = fapr(X) obtained from the at-
tention module with acoustic features in Figure 4.3.

The attention module is responsible for learning an attention map H €
R**/>2 from the log-Mel spectrogram and the Wavegram. Its objective is to
emphasize regions of features that are most informative for the classification
task. This module has been extensively analyzed for evaluating the distance
between a microphone and a speaker [51]. However, its application in ASD
has not been investigated yet. In this work, it is denoted as the function
fapp @ RX2 5 RTXFX2 Tt comprises 2 separable convolutional blocks,
having 16 and 64 3 x 3 filters, respectively. Then, a 1 x 1 convolutional layer,
that acts as a linear projection to reduce the number of channels, with two
filters, followed by a sigmoid activation function for mapping each pixel into
a probability, is used to map the features to yield the ¢ x f x 2 attention map.
Finally, the weighted acoustic features X € R**/*2 are obtained by element-
wise multiplication (®) between the two time-frequency representations and
the attention map as X = farr(X) ® X. Examples of attention maps are
shown in Figure 4.4.

To improve the robustness of the model, we synthetically augment the
dataset using mixup [76] in each batch during the training, defined as
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(4.1)

9 =g’ + (1 — \)2?
Y7 =2y 4 (L= Ny,

where (x,y) is the tuple describing the waveform = and the one-hot encoded
metadata y = [y1, o, ...,y with ¢ classes of a single audio recording under
analysis, respectively. i,j € {0,1,...,n — 1} are randomly selected indexes
of training audio samples in the batch with size n, and A ~ Beta(a, a) is the
mixup coefficient. This augmentation can be performed at different levels
of the deep learning architecture, e.g., input level or at intermediate feature
levels [76]. In this work, the augmentation procedure is applied to input
signals before the preprocessing step, following [50].

Finally, to distinguish between anomalous and normal sound, an anomaly
score Ay is computed from the predicted metadata and the ground truth.
As a classification-based approach, if a sound is misclassified, then it is
anomalous since the model is trained to correctly classify normal sounds.
We utilize ArcFace [24] as the classification layer,

T es cos 0+my
£<07 y>AF =Yy Z?fl escosb;+my;’ <42>
where the angular vector @ = [0y, 65, ..., 0.] is obtained for each class by

computing ; = arccos(w? h), which is the result of the mapping between
the features obtained from the classifier h € R"*! and learned ArcFace
weights w; € R"*! for the i-th class. The scalars s € RT and m € R*
are the scale and margin coefficients for the ArcFace loss, respectively. As
introduced in [50], the employed loss function for training the model is

L(0,y,y7) = AL(0,y)ar + (1 — N)L(O,y7) ar. (4.3)

During the testing phase, as the augmentation is not performed, the anomaly
score is computed as Ay(y, ) = L(0,y)ar.

4.3 Experiments

The Task 2 development dataset of the DCASE 2020 challenge [58] is used
to assess the performance of the proposed approach. It encompasses six
machines (Fan, Pump, Slider, Valve, ToyCar, and ToyConveyor), and each
machine is labeled with a unique identifier to differentiate audio recordings
from various machines within the same category. A total of 41 machines
with 10 seconds of audio signals are collected. To assess the performance of
the proposed approach, we evaluate the AUC and pAUC metrics. The latter
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is the AUC over a low FPR in the range [0, p] with p = 0.1, following [77].
Our approach is trained to classify the ¢ = 41 labels derived from machine
types and IDs [58,60]. For the loss and mixup computation, parameters
are set as o = 0.2, m = 0.7, and s = 40, following the guidelines provided
by their corresponding works [24,76]. Log-Mel spectrogram and Wavegram
output have t = 313 and f = 128 bins. The classifier is MobileFaceNet [54],
which yields a feature vector with dimensionality h = 128. The network is
optimized using AdamW with a learning rate of 0.0001, epochs of 300, and
a batch size of 64. Hyperparameters of the training procedure have been
assigned using a grid search optimization procedure.



CHAPTER 4. UNSUPERVISED SOUND ANOMALY DETECTION

68

Table 4.1: Comparison with SOTA methods. Bold and underline are used to highlight first and second-
best results, respectively.

Methods Fan Pump Slider Valve ToyCar ToyConveyor
o ) AUC [%] pAUC [%] | AUC [%] pAUC [%] | AUC pAUC [%] | AUC [%] pAUC [%] | AUC pAUC [%)]

IDNN [69] 67.71 52.90 73.76 61.07 86.45 67.58 84.09 64.94 78.69 69.22
MobileNetV2 [72] 80.19 74.40 82.53 76.50 95.27 85.22 88.65 87.98 87.66 85.92
Glow-Aff [70] 74.90 65.30 83.40 73.80 94.60 82.80 91.40 75.00 92.20 84.10
GMM + Arcface [66] 87.97 80.66 95.63 85.74 99.22 97.55 91.26 84.00 95.28 86.91
STgram-MFN [48] 94.04 88.97 91.94 81.75 99.55 97.61 99.64 98.44 94.44 87.68
SW-WaveNet [49] 97.53 91.54 87.27 82.68 98.96 94.58 99.01 97.26 95.49 90.20
Noisy-ArcMix [50] 98.32 95.34 95.44 85.99 99.53 97.50 99.95 99.74 96.76 90.11
Proposed approach 95.10 87.25 91.97 80.00 99.24 96.10 99.99 99.96 96.99 90.30
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The performance of the proposed approach compared with those ob-
tained with SOTA architectures are represented in Table 4.1. Overall, the
proposed approach shows the best performance in three of the six equipment
types (Valve, ToyCar, and ToyConveyor). In the other classes (Fan, Pump,
and Slider), the performance is still competitive. Generally, Table 4.1 can
be used as a reference for the selection of the approach that is most suitable
to the specific use case. Regarding the computational complexity analysis,
Table 4.2 highlights the number of parameters and the performance of the
proposed approach compared with those of the SOTA. Our system offers a
good trade-off between model complexity and performance.

Table 4.2: Number of parameters, average AUC, and average
pAUC of SOTA approaches and proposed method.

Methods Parameters AUC [%] pAUC [%]
IDNN [69] 46 k 76.96 62.57
MobileNetV2 [72] 1.1 M 84.34 77.74
Glow-AfE [70] 30 M 85.20 73.90
GMM + Arcface [66] 1M 89.86 82.68
STgram-MFN [48] 1.1 M 92.36 86.34
SW-WaveNet [49] 27T M 93.25 87.41
Noisy-ArcMix [50] 1.1 M 94.65 89.31
Proposed approach 884 k 93.44 85.71

Table 4.3 shows the selection of parameters regarding the type of fea-
tures and the dimensionality of the ArcFace layer. The use of Wavegram
representation [Xy,y] in conjunction with the log-Mel spectrogram can im-
prove the performance of the proposed model by 1.17% in terms of AUC,
albeit being ineffective using it alone. Moreover, the best performance is
obtained by setting the dimensionality of the classification layer to h = 128.

Table 4.3: Selection of parameters of the proposed approach.

Features h  AUC [%] pAUC [%]
Feature study

[ X Mel] 128 92.26 84.55

[ Xwav] 128 63.48 54.12
Dimensionality study

[XMel, Xwav] 256 90.87 83.94

[XMeh XWav] 64 91.94 85.00

[Xnteh, Xwav] 128 93.43 85.71
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To better explain which parts of the log-Mel spectrogram are relevant for
the ID classification, Figure 4.5 shows the average and standard deviation
maps on the testing set of the proposed heatmap.

Average attention map on log-Mel Spectrogram Standard deviation of attention map on log-Mel Spectrogram

Mel bins

Time [3 B Time [

Figure 4.5: Mean and standard deviation of the attention map
of the log-Mel spectrogram on testing set.

It is worth highlighting that the most important frequency bins for the
identification of anomalies, i.e., ID misclassification, are contained in the
range [1.7,8] kHz of the log-Mel spectrogram. In addition, the range [0, 71]
Hz is also relevant. The rest of the log-Mel spectrogram [0.071,1.7] kHz
is assigned a value of 0.5 with zero variance, denoting this region as less
important for the ID classification and, thus, less reliable for the identifica-
tion of anomalies. To assess the impact of both separable convolutions and
the attention module, an ablation study has been carried out. Table 4.4
demonstrates the effectiveness of using the attention map in combination
with separable convolutions.

Table 4.4: Ablation study.

Methods Parameters AUC [%] pAUC [%]
No both 1M 90.50 83.62
No separable 1M 92.25 84.82
No farr 882 k 91.72 84.52
Proposed approach 884 k 93.43 85.71

4.4 Summary and Conclusion

In this work, a learning-based low-complexity approach is proposed to detect
anomalous sound in a machine monitoring scenario. To this aim, a DNN is
proposed. It exploits an attention module to highlight the most salient time-
frequency patterns for identifying machine IDs. Then, an anomaly score is
computed from the classification errors between predicted and ground truth
metadata. Experimental results demonstrate the validity of the proposed
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low-complexity model. Future work will focus on the improvement of the
attention module, coping with more complex tasks in the realm of sound
anomaly detection such as few and one-shot unsupervised anomaly detec-
tion.

The content of this Chapter is associated with the following publication:

s Michael Neri, and M. Carli,“Low-complexity Unsupervised Audio
Anomaly Detection exploiting Separable Convolutions and Angular
Loss”, in: IEEFE Sensors Letters, 2024.
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Chapter 5

Low-Complexity Sound Event
Detection in Noisy
Environments

5.1 Introduction

The objective of a sound event detector is to recognize anomalies in an audio
clip and return their onset and offset. In more detail, differently from mono-
phonic audio classification, the objective of a SED system is to identify both
the type of event and the exact time of its onset and offset [78]. However,
recent state-of-the-art models trained on AudioSet [79] have shown to be
unsuitable for human security and safety-oriented applications [78]. Gener-
ally, SED systems trained on AudioSet provide accurate start and end time
identification of acoustic events, while their Recall may be unsatisfactory.
In addition, detecting sound events in noisy environments is a challenging
task. This is because, in a real audio signal, several sound sources co-exist,
together with uncontrolled environmental and thermal noise. Moreover, the
lack of large annotated audio datasets has a significant impact on the per-
formance of SED models, leading to weak generalization capabilities of deep
learning-based systems.

To address these problems, in this Chapter, a sound anomaly detection
system is proposed, which is based on a FCN that exploits image spatial
filtering and an ASPP [80] module called AuSPP. In more detail, our model
aims to detect audio events that potentially denote the presence of circum-
stances threatening public safety and security (e.g., broken glass, gunshots,
or shouting). The proposed model has been tested in a public transporta-
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tion vehicle. The motivation for this choice is twofold. First, modern buses
are equipped with on-board sensors able to collect heterogeneous data that
can be employed for maintenance, i.e., the Automatic Vehicle Monitor-
ing (AVM) paradigm [81]. Second, the same raw audio information can
be exploited for granting passenger security and safety in a noisy urban
environment.

To cope with the lack of datasets specifically designed for sound event
detection for our scope, an annotated audio SED dataset, SEDDOB, specif-
ically designed for the bus environment, has been devised. In more detail,
labelled audios with the onset and offset time of different types of audio
events are provided. To the best of our knowledge, this is the first contri-
bution of an audio dataset for human safety in the public transport system.

The performances of the proposed system have been evaluated through
segment-based metrics such as error rate, recall, and F1-Score. Moreover,
robustness and precision have been evaluated through four different tests.
The analysis of the results shows that the proposed sound event detec-
tor outperforms both state-of-the-art methods and general-purpose deep
learning solutions. In addition, in the proposed approach, the number of
learnable parameters depends on the number of class anomalies and on the
time resolution. Hence, with respect to state-of-the-art SED approaches, it
is possible to customize the behaviour of AuSPP, drastically reducing its
complexity and detecting more sound events than state-of-the-art models.

To summarize, the contributions of this Chapter are as follows:

m the definition of a new augmented spectrogram that exploits spatial
filters to enhance time-frequency patterns by means of the ASPP mod-
ule;

m the design of an end-to-end SED that is more lightweight than state-
of-the-art approaches. Moreover, the number of parameters depends
on the time resolution and on the number of classes, thus being cus-
tomizable;

m the generation of a new SED dataset for the bus environment. Syn-
thesis of real background recording with anomalous events from state-
of-the-art monophonic datasets has been performed.

5.2 Proposed Approach

One of the peculiarities of the proposed model, AuSPP, is the exploitation
of a larger dimensional input than state-of-the-art Mel spectrogram-based
methods. This choice allows the extraction of a larger number of semantic
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audio features. More specifically, the information provided by the concate-
nation of spatial derivatives of the Mel spectrogram helps the model to
learn frequency patterns for jointly classifying the audio events and their
corresponding onset and offset times.

-
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Figure 5.1: Structure of AuSPP, the proposed model for SED.

AuSPP can be partitioned into three main blocks: a pre-processing
stage, the ASPP, and a FCN. The first stage is responsible for extract-
ing a time-frequency audio representation, applying spatial filters to the
input audio spectrum, and arranging the output into an augmented Mel-
spectrogram. Subsequently, the ASPP module is introduced to combine the
output of dilated convolutional filters. Finally, a FCN processes the ASPP
output to obtain the predicted activity heatmap. The overall architecture
is depicted in Figure 5.1.

The Mel spectrogram X is computed by means of the Mel-Filterbank
Hyel, () on the squared magnitude of the STFT of the input single-channel
recording x[n]

X[m, k] = Hye, {|STFT{z[n]}|*}. (5.1)

In more detail, the Mel filterbank groups the spectral values of each time
frame into f logarithmic bins to model human sound perception. Hence,
the Mel spectrogram X has size M x f.

To enhance the audio patterns on the Mel-Spectrogram, Sobel [82] and
Langrangian [83] operators have been employed. Let H, and H, be the hori-
zontal and vertical first-order spatial derivatives, respectively. Furthermore,
let H; be the second order spatial derivative

~1 -2 -1 ~1 0 1
H,=|0 0 0|, H=|-20 2|, (5.2)
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H =1 —4 1|. (5.3)
0O 1 O

The first Mel spectrogram spatial derivative is calculated by convolu-
tion:

X! = X x H,, .
X! = X « H,, (5.5)

X'= X2+ X2 (5.6)
Similarly, the second spatial derivative is obtained as:
X" =X« H,. (5.7)

Finally, the Mel spectrogram is concatenated on the frequency axis with its
derivatives in an augmented Mel spectrogram X with size M x 3f:

X=XoXoX", (5.8)

where o denotes the concatenation function. An example of an augmented
spectrogram H is depicted in Figure 5.2.

Figure 5.2: Augmented spectrogram X of size M x 3 f. The x-
axis corresponds to the time domain, whereas the
y-axis represents the frequency domain. It is worth
noticing that the output of the two spatial filters
emphasises the edges of the Mel spectrogram, i.e.,
the most intense frequency bins in terms of magni-
tude.

In this model, the ASPP module [80] is employed. In more detail, it
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applies atrous convolutions to the augmented Mel spectrogram to extract
more relevant spatial features. Considering two-dimensional signals, given
the augmented Mel spectrogram X , a convolutional kernel W, and a region
of interest I, the output of the atrous convolution for the selected region,
Yi], is:
V(i) = X[i+ (r- k)W, (5.9)
k

where the atrous rate r is the stride parameter of the convolutional layer
of the network, which allows to application of convolutions to the input
spectrogram X with upsampled zero-padded filters. The variable k accounts
for all the possible regions of the image. In the proposed model, the ASPP
module is composed of 5 atrous convolutions with kernels of size 3 x 3 with
an atrous rate of 1,2,4,8, and 16, respectively. This design choice has been
considered for capturing new time-frequency patterns across the augmented
spectrogram.

Table 5.1: Description of the proposed FCN of AuSPP.

Input: X Augmented Mel-Spectrogram T’ x 3f

ConvBlock(8)

Max + Average Pooling 4 x 2
ConvBlock(16)

Max 4 Average Pooling 4 x 2
ConvBlock(32)

Max + Average Pooling 2 x 2
ConvBlock(128)

Max + Average Pooling 2 x 2
ConvBlock(512)

Max + Average Pooling 2 x 2
ConvBlock(T X Negss)
Global Max + Average Pooling
Reshape to 1 channel T X N
ConvBlock(16)
ConvBlock(64)
ConvBlock(16)
ConvBlock(1)

Sigmoid activation function

Output: Y Binary Activity Matrix T' X Nggss

Inspired by the network architecture proposed in [18], let ConvBlock(C')
be the generic convolutional block with C' output channels, shown in Fig-
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ure 5.3. It is composed of two consecutive Conv2D-BatchNormalization-
ELU [84,85] blocks with 3 x 3 kernels. Variable pooling sizes are applied to
intermediate ConvBlock(-) outputs to reduce the size of the feature maps.
Moreover, a Dropout [86] layer is applied at the end of each ConvBlock(+)
to reduce overfitting.

/ Conv2D 3x3 @ C, padding = 'same’
Batch Normalization

Exponential Linear Unit

Conv2D 3x3 @ C, padding = 'same'

Batch Normalization

Exponential Linear Unit

c

Figure 5.3: General convolutional block with C' output chan-
nels.

5.3 SEDDOB: Sound Event Detection
Dataset On the Bus

A synthetic audio dataset SEDDOB has been designed. As previously men-
tioned, a large number of high-quality annotated audios is required for train-
ing data-driven approaches. In the following, we describe the recording
setup and the synthesis of the sound classes.

To collect a typical bus background, a microphone array and a recording
unit have been deployed inside a bus. The microphone array has been
positioned in 3 different locations (Figure 5.4). This choice accounts for the
observation that in the bus used for the recordings, the engine is located in
the rear. Therefore, the background sound pressure level and its spectral
characteristics change with distance from the engine, which is the main
source of background noise. The total length of the recorded background
noise is 1 hour. All the recordings have been acquired in dedicated runs in
compliance with General Data Protection Regulation (GDPR).

The audio events selected for the classification task are extracted from
existing monophonic datasets: UrbanSound8k [9], ESC50 [10], and Au-
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' Microphone arra
g p y

Figure 5.4: Picture of the background recording setup where
(to,t1,t2) are the microphone positions.

dioSet [79]. Silences and clipping audio recordings have been removed in
order not to bias the training of the models. In total, 10 audio classes, which
can occur in a bus environment and that can relate to threatening events
for public safety and security, have been selected: breaking_glass, car_horn,
gunshot, siren, slap, scream, cry, jackhammer, car_alarm, smoke_alarm.
Scaper [87] has been used to generate the proposed dataset by adopting the
parameters configuration reported in Table 5.2. The audio length is selected
based on the characteristics of human auditory perception. Tests on human
subjects confirm that 4 seconds are sufficient to correctly classify events [9].
Furthermore, the distribution of class events, together with their number,
onset, and offset times, is set as uniform to create a balanced dataset. In
addition, augmentation strategies such as pitch shift, time stretch, and vari-
able SNR have been introduced for generalization purposes.

5.4 Experiments

To properly test the performance of our proposed SED model, we first cre-
ated and then adopted two different datasets, namely ”full dataset” and
"reduced dataset,” respectively, containing 10 and 4 audio classes. We sam-
ple a reduced dataset to examine the model’s performance under a simpler
classification task, hence providing insight into its robustness, adaptability,
and efficiency in handling a smaller set of audio classes.
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Table 5.2: SEDDOB characteristics.

Audio Settings

Number of soundscapes 10000 samples

Fixed duration 4s

Sampling frequency f 16000 Hz

Anomalies Statistics

Minimum number of events 0

Maximum number of events 4

Distribution of the number of events | Uniform

Distribution of class anomalies Uniform
Augmentation Statistics

Minimum SNR —5dB

Maximum SNR 0dB

Distribution SNR Uniform

Minimum pitch shift —(0.5 semitones

Maximum pitch shift 0.5 semitones

Distribution pitch shift Uniform

Minimum time stretch 0.9

Maximum time stretch 1.1

Distribution stretch Uniform

We have also tried different detector resolutions, 20ms and 50ms, across
audio classes. This was to investigate how time-granularity affects the com-
plexity and accuracy for the detection of sound events. From these, we saw
how different time resolutions would influence the model in the detection
of sound events and hence gave deeper insight into the trade-offs between
temporal precision and the computational demand of the model-—something
critical to the optimization of real-time applications.

We also ran experiments varying the threshold activity levels, which
quantify the model’s confidence in its detections of sound events. In partic-
ular, we defined loose threshold and strict threshold as 0.8 and 0.9, respec-
tively. The loose threshold was set to make the model detect events more
sensitively and thus probably cover more subtle occurrences at the expense
of increasing false positives. On the other hand, the strict threshold was sup-
posed to give more confidence that only the most certain detections would
be taken into consideration, thereby reducing false positives but probably
missing some real events. We benchmarked this at each of these different
thresholds to show how detection confidence influences model accuracy and
general reliability if we want an overall assessment of model behavior under
the influence of operating conditions.
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In these systematic variations, we make changes at an increasing level
of complexity of the dataset, temporal resolution, and threshold settings to
ensure a stringent test of the SED model’s capabilities to arrive at meaning-
ful conclusions about its performance for a wide range of realistic scenarios.
Both datasets are split into 10 folds to use different portions of the data for
training and testing. The AuSPP weights are updated utilizing the Adam
optimizer with learning rate \. The STFT, Mel filterbank, and training
hyperparameters for each model are listed in Table 5.3.

Table 5.3: STFT parameters and training hyperparameters for
all the models.

STFT Settings

Minimum frequency 50 Hz
Maximum frequency 8000 Hz
Hop size H 160 samples
Window size N 512 samples
Window function w Hanning
Nprr 512 samples
Mel filterbank Settings

f ‘ 64 bins

Training Hyperparameters
Learning rate A 0.001
Batch size 16 samples
Maximum epochs 50 epochs
Learning rate scheduler | Reduce on Plateau of validation loss
Scheduler patience 4 epochs
Scheduler factor 0.1

We present the results of four tests where the ability to generalize and
the robustness of the proposed framework are compared to state-of-the-art
techniques [18,88-91]. Since SEDDOB is split into 10 folds, we provide the
mean values for the aforementioned metrics.

As shown in Tables 5.4, 5.5, 5.6, 5.7, some metrics such as Acc, S;, P;
are not meaningful for rare anomalous events activity since they are biased
by the high value of TN. Moreover, they do not take into account:

» multiple class events must be recognized in the same time frame (class
errors);

m the wrong predictions of onset and offset timestamps for a correct
class event (time errors).
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Reduced dataset, small time frame, and loose threshold

This test is performed for evaluating the AuSPP performance on a reduced
number of audio classes with a high time-resolution. In more detail, 10.000
audio tracks with 4 anomalous events (breaking_glass, car_horn, gunshot,
and siren) are used for training and testing. The temporal resolution is set
to 20ms, and the loose threshold 9 is set to 0.8 to filter low probabilities from
the predicted activity matrix Y. As shown in Table 5.4, AuSPP outperforms
both general and SED deep learning approaches for all the metrics, except
for the precision metric.

However, for a security-driven system, the proposed model is preferable
since it has a larger recall than the state-of-the-art PANNSs (in this work, we
select the best model, CNN14 [18]), with an improvement of 7.68%. From
the results, the model pre-trained on AudioSet [79] does not outperform the
other models even if it has been trained on a large annotated audio dataset.
This behaviour could be caused by the reduced number of audio events to
be classified. As a drawback, AuSPP shows a smaller value of precision
than the other models.

Activity Matrix Ground Truth

breaking_glass

Time [5]

Activity Matrix Prediction

175 20 225 25
Time [s]

Figure 5.5: Example of a ground truth Y and a successful pre-
dicted Y from AuSPP activity matrices, respec-
tively. In this example, two events are overlapping
but the proposed model succeeds in distinguishing
them with high probabilities.

More specifically, predicted onset and offset timestamps of events from
AuSPP are less accurate, as it can be seen in Figure 5.5. This can be due
to the low complexity of the model to state-of-the-art models.



5.4 EXPERIMENTS 83

Full dataset, small time frame, and loose threshold

In this case, a dataset of 10.000 audio samples is generated with all 10 audio
class events. Hence, AuSPP ability to recognize multiple class anomalies is
tested together with the other models. The results reported in Table 5.5
show that AuSPP achieves comparable results to the version of CNN14 [18§]
pre-trained on AudioSet [79]. It is worth noticing that AuSPP, with 75%
fewer parameters than CNN14, does not require additional data. Therefore,
AuSPP can be employed in edge computing devices where computational
resources are limited.

Full dataset, small time frame, and strict threshold

Exploiting the aforementioned extended dataset, this test allows to analyze
the predictions of all the models by adopting the strict threshold (6 = 0.9).
With this test, we evaluate which model is more confident, i.e. higher prob-
ability, of its predicted activity matrix. Table 5.6 shows that the proposed
AuSPP outperforms state-of-the-art approaches with a Recall improvement
of 4.74% over CNN14 [18], the second-best model. Similarly, with the
other tests, our model is less precise with respect to the state-of-the-art
pre-trained model on AudioSet.

Full dataset, large time frame, and strict threshold

Finally, we increase the time-frame from 20ms to 50ms and re-train all mod-
els in order to assess their performances. As shown in Table 5.7, AuSPP out-
performs state-of-the-art SED models with a recall improvement of 5.16%.
It is worth noticing that the proposed method achieves better performance
without the ASPP module. Hence, using a larger time frame, it is preferable
to avoid using the module since no improvements can be obtained.
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Table 5.4: Performance of SOTA models and of the proposed approach on 4 classes with threshold 6 = 0.8
and time frame T' = 20ms. We denote with 1 when the performance is better when the metric
is high and | otherwise.

Segment-based

Parameters | | F2. 1 (%) ER| F2,1 (%) R.1 (%) P.1t (%) Acct (%) Acem T (%) St (%)
General-purpose models
VGG16 [88] 145.36M 68.11 0.45 70.48 56.23 95.99 94.83 55.16 99.77
VGG19 [88] 150.67M 65.18 0.48 52.91 52.91 95.84 94.46 51.91 99.77
ResNet18 [89] 14.93M 73.79 0.38 75.69 63.24 95.16 95.54 61.81 99.69
ResNet34 [89] 25.04M 67.61 0.44 69.79 56.86 94.80 94.83 55.53 99.69
ResNet50 [89] 26.21M 73.33 0.38 75.32 62.84 95.44 95.50 61.42 99.70
ResNet101 [89] 45.20M 64.72 0.48 66.60 53.28 95.28 94.47 52.10 99.73
MobileNetV2 [91] 7.55M 71.37 0.41 73.48 59.95 96.47 95.25 58.90 99.78
MobileNetV3 [91] 9.53M 41.60 0.69 44.38 31.67 86.01 92.16 31.03 99.83
DenseNet121 [90] 11.76M 61.96 0.49 63.83 51.27 95.31 94.29 50.25 99.76
DenseNet169 [90] 18.60M 63.83 0.48 65.84 52.89 92.04 94.42 51.70 99.73
SED models
CNN14 [18] 83.46M 69.00 0.44 71.22 56.89 97.12 94.96 56.13 99.83
Pre-trained CNN14 [18,79] 83.46M 71.09 0.42 73.16 59.34 96.26 95.22 58.59 99.81
Wavegram-LogMel-CNN [18] 82.69M 70.78 0.41 72.96 59.70 95.11 95.14 58.27 99.69
Our Model
AuSPP w/o ASPP 7.78M 74.48 0.36 76.48 65.13 93.50 95.60 62.78 99.53
AuSPP + ASPP 7.78M 76.12 0.34 77.67 67.02 92.95 95.76 64.46 99.47
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Table 5.6: Performance of SOTA models and of the proposed approach on 10 classes with threshold 6 = 0.9
and time frame T' = 20ms. We denote with 1 when the performance is better when the metric
is high and | otherwise.

Parameters | | F2. 1 (%) ER| F2,1 (%) R.1 (%) P.1t (%) Acct (%) Acem T (%) St (%)
General-purpose models
VGG16 [88] 145.36M 33.76 0.77 37.01 21.97 89.02 96.46 21.85 99.98
VGG19 [88] 150.67M 26.70 0.82 29.83 16.96 84.89 96.22 16.86 99.98
ResNet18 [89] 14.93M 55.10 0.59 57.83 40.37 96.95 97.27 39.92 99.95
ResNet34 [89] 25.04M 16.52 0.88 17.56 11.49 43.86 95.95 11.34 99.97
ResNet50 [89] 26.21M 47.58 0.64 49.49 35.22 85.82 97.02 34.76 99.95
ResNet101 [89] 45.20M 11.37 0.92 12.10 7.98 36.98 95.80 7.91 99.99
MobileNetV2 [91] 7.55M 41.39 0.71 44.71 28.18 96.15 96.74 27.97 99.97
MobileNetV3 [91] 9.53M 3.76 0.98 4.14 2.23 16.53 95.54 2.23 99.99
DenseNet121 [90] 11.76M 19.74 0.86 21.00 13.98 49.00 96.07 13.84 99.98
DenseNet169 [90] 18.60M 18.30 0.87 19.47 12.61 42.46 96.00 30.36 99.97
SED models
CNN14 [18] 83.46M 44.58 0.69 47.36 30.57 97.55 96.84 30.36 99.97
Pre-trained CNN14 [18,79] 83.46M 56.37 0.58 58.87 41.31 97.58 97.32 41.06 99.97
Wavegram-LogMel-CNN [18] 82.69M 48.09 0.65 51.00 33.93 96.73 96.97 33.57 99.95
Our model
AuSPP w/o ASPP 16.67M 58.59 0.54 61.17 45.12 90.35 97.35 43.47 99.82
AuSPP + ASPP 16.67M 59.49 0.53 61.98 46.05 91.13 97.40 44.40 99.83
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5.5 Conclusion

In this Section, we propose AuSPP, a lightweight deep learning model that
applies spatial filters to Mel-spectrogram to predict different anomaly classes
with the corresponding onset and offset time. Moreover, we introduce
SEDDOB, a human safety-oriented dataset that provides high-quality anno-
tated audio waveforms for detecting anomalies on buses. To assess the per-
formance of AuSPP, four tests on SEDDOB demonstrate that our AuSPP
outperforms state-of-the-art general-purpose deep learning approaches with
a reduced number of audio event classes. In addition, AuSPP achieves
comparable results concerning SED models pre-trained on large-scale audio
datasets with fewer learnable parameters.

However, the results show that significant improvements can be achieved.
All considered models suffer from false alarms on normal recordings, signif-
icantly impacting on the task of ensuring human safety. As a possible solu-
tion, further studies on a coarse-to-fine approach for increasing the quality
of audio prediction - in terms of recall and F-score metrics - could be per-
formed. Moreover, tests could be conducted on a real scenario exploiting
edge computing devices. Finally, model interpretability could be performed.

The content of this Chapter is associated with the following publication:

m Michael Neri, F. Battisti, A. Neri, and M. Carli, “Sound Event
Detection for Human Safety and Security in Noisy Environments”, in:
IEEFE Access, 2022.



Chapter 6

Continuous Speaker Distance
Estimation in Single-Channel
Audio Signals

6.1 Introduction

In the previous Chapter on SED, we focused on developing models that
can accurately identify and classify various sound events within an acoustic
environment. The ability to detect and differentiate sound events, such
as human speech, is a crucial step toward more advanced audio analysis
tasks. However, identifying speech alone is not always sufficient, especially
in applications where understanding the spatial context of the speaker is
essential, e.g., speech separation and enhancement [92].

First, it is important to highlight that a SED model can identify the
presence of speech, but it cannot distinguish between real and Al-generated
ones. Regarding fake audio, in recent years, the development of genera-
tive deep learning architectures has led to increased concerns about the
deepfake problem. Deepfakes are synthesized using Al algorithms - such
as GANs, CNNs, and DNNs [93,94] - to generate artificial media contents
that are difficult to distinguish from real ones. As a result, this technol-
ogy may be used with malicious intent to perpetrate attacks on people and
institutions. Therefore, interest in deepfake generation and recognition is
spreading, resulting in a strong interest in the research community. In ad-
dition, recognition of the synthesis method of a deepfake audio can provide
information about the forger. However, to the best of our knowledge, this
problem is in an embryonic stage [95].

89
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Given that Al-generated speech, also known as audio deepfake, has
gained increasing interest due to its potential misuse in security contexts,
the job of audio analysis must go further than simply determining whether
speech sounds real or has been synthetically generated. Another very im-
portant area of audio processing involves the ability to estimate a speaker’s
distance.

Accurately estimating the distance of a speaker has significant implica-
tions for various applications. In smart home systems, knowing how far a
person is from a microphone can improve the system’s ability to respond
appropriately to voice commands. In surveillance and security contexts,
distance estimation can help in assessing the potential threat level or iden-
tifying the location of an individual within a monitored space. Moreover, in
teleconferencing systems, distance estimation can enhance the audio expe-
rience by adjusting the gain or applying spatial audio effects based on the
speaker’s proximity.

Closed environment

[xrayryzr]
b4 deR

558793; Zs

d=f(x), f:RVI1LR ((>

Figure 6.1: Definition of the continuous speaker distance esti-
mation task.

It is often performed in conjunction with Direction of Arrival (DoA)
estimation, in which only the direction information about the source po-
sition is obtained. Both tasks are useful in many practical applications,
including increasing the robustness of automatic speech recognition [96] by
enhancing the performance of acoustic echo cancelers [97] and autonomous
robotics [98,99]. Despite both DoA and speaker distance are estimated
using multi-channel audio in most practical scenarios [100], the latter has
been largely under-researched [101]. Firstly, speaker distance estimation is
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widely regarded as a more difficult task due to distance cues vanishing with
the increased space between the sound source and the receiver. Secondly,
DoA offers sufficient information in many downstream spatial filtering tasks.
However, many applications such as source separation, acoustic monitoring,
and context-aware devices would still benefit from full information about the
sound source position, hence the need for further investigations on Source
Distance Estimation (SDE).

In this direction, speaker distance estimation or, more generally, source
distance estimation are considered tough challenges. Figure 6.1 visually
explains the task, where a microphone in position [z, y,, z,] captures the
sound produced by a source/speaker at position [z, ys, zs] in a closed envi-
ronment. Specifically, we aim at estimating the distance d € RT between
them, with solely the information of the position of the microphone, as it
is generally known a-priori by design.

To solve these problems, state-of-the-art approaches involved binaural
signals and hand-crafted features, i.e., estimation of DRR [102] and RIR,
to mimic the human auditory system and to infer the distance of a generic
source. In more detail, Vesa designed multiple Gaussian Mixture Mod-
els (GMMs) that extract features from the correlation between binaural
channels to classify the distance [103,104]. Georganti et al. exploited the
standard deviation of the difference between the binaural signals to train
an ensemble of GMMs and Support Vector Machines (SVMs) [105]. How-
ever, these methods suffer from complex hyperparameter tuning, impacting
the generalization capabilities in environments that have differing acoustic
conditions from the training dataset. Further, recent works provided exper-
iments for a limited set of distances and rooms [106, 107]. Moreover, the
employment of DNN in this topic has not been properly investigated by the
research community.

Most methods for both DoA and distance estimation rely on arrays with
more than two microphones [108]. Multichannel data allows for exploiting
spatial cues such as Interchannel Time Differences (ITDs) and Interchannel
Level Differences (ILDs) to provide information for efficient DoA estimation,
positively affecting distance estimation as well [99]. However, using multi-
ple microphones poses certain limitations in terms of budget and physical
portability. To tackle this problem, some studies investigated using bin-
aural recordings for that purpose, allowing for decreasing the number of
channels to two by exploiting the human hearing cues [92, 109]. However,
the simplest scenario of estimating distance from a single microphone has
been largely under-researched [110]. Moreover, the vast majority of studies
focus on a classification approach, in which the distance is discretized into
a set of disjunctive categories, e.g., “far” and “near”, allowing for easier
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model training and a higher accuracy [105,111]. However, using pre-defined
categories does not allow for continuous estimation, which puts limits on
the precision of the obtained sound source position.

Only a few works have addressed the problem of speaker distance using
single-channel audio [112]. The rationale behind the use of monophonic
microphone signals or fixed beamformers is to reduce time and space com-
plexity in low-power systems with limited computational resources [111].

One of the first works on this scope employed low-level features such
as Linear Predictive Coding (LPC), skewness, and kurtosis of the spectrum
to classify the distance bin of a speaker [111]. Regarding DNN approaches,
Patterson et al. classified far and near speech. With this information, they
were able to perform sound source separation from single-channel audio
signals [110].

To the best of our knowledge, single-channel speaker distance estima-
tion has never been estimated but classified in quantised values. Most of the
studies involved binary classification [109,110], i.e., far and near, or classifi-
cation into distance bins of a short range (5 classes from 0 to 3 meters) [111].
In addition, the use of DNNs in this novel scenario is under-researched.

In this Chapter, a new task of speaker distance estimation is proposed
to estimate continuous distance values rather than discrete bins, differently
from previous state-of-the-art works.

The effectiveness of our approach is assessed by simulating different con-
figurations of room shapes, materials, and locations of the microphone and
the speaker. By doing so, the method generalizes to rooms and locations
that are not present in the training set. Moreover, the idea is to exploit
reverberation cues, thus without any a-priori knowledge of the room, to
estimate the distance. This characteristic is fundamental as it is generally
unfeasible to collect the acoustic parameters of a room. Our results demon-
strate that the proposed technique provides speaker distance estimation
with an absolute error in the order of centimeters in noiseless conditions.
The ablation study demonstrates that phase-related features, i.e., applying
the sin(-) and cos(-) functions to the raw phase of the STFT, are the most
representative features for estimating the speaker distance, implicitly mod-
elling the RIR. Finally, we show that additive noise makes the distance
estimation task significantly more challenging.

The contributions of this Chapter can be summarized as follows:

m Definition of a learning-based synthetic speech classifier which ana-
lyzes MFCC and GTCC to enhance the artifacts caused by deepfake
generators. ParalMGC achieves the highest value on our validation
accuracy split on the 2022 IEEE Signal Processing Cup dataset.
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m The task of speaker distance estimation is proposed to estimate con-
tinuous distance values rather than discrete bins, differently from pre-
vious state-of-the-art works.

m A deep learning-based baseline for solving the SDE is devised. Our
approach consists of a CRNN, which processes acoustic features such
as the sine and cosine of the STF'T phase of the single-channel audio
recording. In addition, further experiments demonstrate how phase
features are effective in high SNR scenarios.

m To better estimate the speaker distance estimation, an attention mod-
ule is proposed. Specifically, it enables the explainability of predic-
tions, providing time-frequency patterns that are employed for the
distance estimation.

m We conduct extensive experiments using audio recordings in controlled
environments with three levels of realism (synthetic room impulse re-
sponse, measured response with convolved speech, and real recordings)
on four datasets (our synthetic dataset, QMULTIMIT, VoiceHome-2,
and STARSS23).

m Experimental results show that the model achieves an absolute error
of 0.11 meters in a noiseless synthetic scenario. Moreover, the results
showed an absolute error of about 1.30 meters in the hybrid scenario.
The algorithm’s performance in the real scenario, where unpredictable
environmental factors and noise are prevalent, yields an absolute error
of approximately 0.50 meters. All the codes and datasets are available
in a dedicated public repository.

6.2 Synthetic Speech Attribution

Several works related to the problem of classifying the algorithm that gen-
erated a given audio signal consider deepfake audio detection. In [113], a
deepfake detection approach using GMMs and Maximum A Posteriori Prob-
ability (MAP) is considered. The authors propose to classify an input audio
as genuine or fake based on its comparison with two reference GMM distri-
butions. However, this approach is applicable only if the data points follow
mixtures of a Gaussian distribution. For this reason, several approaches
exploiting advanced machine learning techniques and neural networks have
been developed.

In [114], a machine learning-based classification approach is presented.
The system exploits bispectral analysis to detect high-order correlations
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within audios. According to the authors, these features are not easily coun-
terfeited by a human spoken audio, thus simplifying the comparison between
real and fake audios. Bicoherence magnitude and phase are extracted, and
low-level features are employed by the Quadratic-SVM classifier. Unfor-
tunately, machine learning approaches suffer from a lack of generalization
capabilities due to their model-driven nature.

In [115], a CNN architecture is presented to detect the audio generated
by a GANs architecture. In this study, MFCCs are extracted as features in
the pre-processing stage. These feature sets are then processed to distin-
guish images of manipulated faces from authentic ones by combining CNNs
and RNNs. Other works consider different types of neural networks, such
as ResNet [116] and SENet [117]. ResNet uses skip connections between
the input and the output in order to avoid the vanishing gradients problem.
The SENet adds to the ResNet model a squeezing operation, which pro-
duces a channel descriptor by aggregating feature maps across their spatial
dimension.

Borrelli et al., in [118], have tried to deal with the problem of the syn-
thetic human speech attribution. In particular, they designed an architec-
ture that can determine whether a specific speech is synthetic or not, and
in the case of a positive answer, identify which algorithm generated it. The
short- and long-term traces have been extracted from audios in input and
fed to three different classifiers: random forest, linear SVM, and a radial
basis function kernel SVM.

Transfer learning methodologies involve the use of pre-trained neural
networks [119]. Nowadays, these techniques are popular since they ease the
training process through an initial set of weights adapted from a previous
task, improving the generalization capabilities of the model. Transfer Learn-
ing approaches have been successfully applied in spoofing audio detection.
Martin-Donas et al. [119] considers the pre-trained Wav2Vec2 architecture
as a feature extractor, which elaborates the raw audio waveform through a
CNN feature encoder and several transformer-based blocks. The extracted
features are then combined with the memory states of each transformer
block and fed as input to an MLP network.

6.2.1 Proposed Approach

Several 2D audio features have been analyzed to extract discriminative char-
acteristics of human speech and synthesis artifacts. Specifically, the features
in the time-frequency and cepstral domain have been considered. To this
aim, two types of spectrograms have been analyzed and processed by an
image processing pipeline: Mel-spectrogram and Bark-spectrogram. In this
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Audio waveform ParalMGC

MFCC

CNN branch N° 1
(based on MFCC elaboration)
Branches Predicted
concatenatio f—p
n class
CNN branch N° 2
(based on GTCC elaboration)

Figure 6.2: Structure of the proposed framework.

kind of representation, a STFT analysis is computed first.

Let x : [0,...,L — 1] — R be a raw single-channel audio track with
L samples and f, be the sampling frequency in Hertz. Moreover, let w :
[0,...,N —1] — R be a window function of N samples and H € N be the
hop size which determines the overlap between two consecutive time frames
in samples. Then, the complex-valued STFT of the input signal Xgrpr is
evaluated as

N-1
Xsrer[m, k] = Zx[n+mH]W[n]672%kn, (6.1)
n=0
where m € [0,...,M —1] and k € [0, ..., K] are the time and frequency

bins, respectively. The Mel-Spectrogram X,.; is computed by means of the
Mel-Filterbank H () on the squared magnitude of the STFT

Xra[m, k] = Hyra(| Xsrrr|?). (6.2)

Similarly to the Mel-spectrograms, Bark-spectrograms are obtained by
using Bark filterbanks Hpgx(+)

XBark[ma k] = HBark(|XSTFT|2)- (6-3)

The bark scale can be used to measure the critical band at which loud-
ness becomes significantly different, while the Mel scale is suitable for pitch
perception and phonetic information [120].

Another representation, which is widely used in the literature due to its
high discriminating power in the field of sound classification, is based on the
MFCCs [115]. MFCCs are extracted by computing the DCT on the loga-
rithm of the amplitude of the Mel-Spectrogram, as shown in Equation (6.4).

MFCC[m, k] = DCTy(log X [m, k] arer), (6.4)

where M FCC[m, k| refers to the (k') MFCC coefficient evaluated for the
(m'") audio frame.
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Two additional features can be derived from MFCCs to achieve a better
description of the signal: MFCC delta and MFCC delta delta. MFCC delta
represents the difference between the cepstral vectors extracted from one
frame and the cepstral vectors extracted from the previous one. MFCC
delta is computed as the difference between two MFCC deltas, referred to as
two adjacent audio frames. Another possibility is to exploit the GTCCs [7].

While MFCCs are computed considering a Mel-filterbank, GTCCs are
extracted considering GammaTone filters: once the Equivalent Rectangular
Bandwidth (ERB) spectrum is obtained, the coefficients extraction proce-
dure follows the same procedure as MFCCs. To the best of our knowledge,
this is the first time that GTCCs are used for audio deepfake classification.

Another possible representation, often used for music signals analysis,
is the Chromagram [121]. The Chroma feature is obtained by filtering the
STFT to represent the audio pitch in a detailed way. Pitch is related to how
the human hearing system perceives different sounds characterized by dif-
ferent frequencies. Pitch can be decomposed into two different components,
which are referred to as tone height and Chroma.

MFCC o |3 2

| Convap ]
[ convap ]

| BatchNorm |

Predicted

class

GTCC — |%

[ convap ]
[ convap ]

[ BatchNorm

Figure 6.3: Structure of ParalMGC.

In addition, we propose a deep learning model that exploits MFCC and
GTCC features. In more detail, it consists of two CNN parallel branches (as
shown in Figure 6.2) with four convolutional blocks, characterized by the
same parameters except for the number of filters: the deeper the convolu-
tional layer, the higher the number of filters. This choice makes it possible
to address two problems: the reduction of the dimensions of the feature
set extracted by the convolutional layers and the need for capturing more
complex combinations of patterns [122,123].

Each of these blocks is composed by a convolutional layer with kernel
size 5 x 5 and a Rectified Linear Unit (ReLU) activation function. Max
Pooling is then applied to reduce the dimensionality of the feature maps
obtained by the convolutional layers, to discard redundant information, and
to reduce the complexity of the network [18]. The pooling is used only in
the first two blocks of the structure so as not to excessively reduce the
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Table 6.1: Description of the proposed ParalMGC.

Input: Spectrograms X and Xpgg

Conv2D(1, 16, 5, 2, “same”) Conv2D(1, 16, 5, 2, “same”)
ReLU ReLU
Max Pooling 2 x 2, stride = 2 Max Pooling 2 x 2, stride = 2
BatchNorm BatchNorm
Conv2D(16, 32, 5, 2, “same”) Conv2D(16, 32, 5, 2, “same”)
ReLlU ReLLU
Max Pooling 2 x 2, stride = 2 Max Pooling 2 x 2, stride = 2
BatchNorm BatchNorm
Conv2D(32, 64, 5, 2, “same”) Conv2D(32, 64, 5, 2, “same”)
ReLLU ReLU
BatchNorm BatchNorm
Conv2D(64, 128, 5, 2, “same”) | Conv2D(64, 128, 5, 2, “same”)
ReLLU ReLLU
BatchNorm BatchNorm
Conv2D(128, 256, 5, 2, “same”) | Conv2D(128, 256, 5, 2, “same”)
ReLlU ReLLU
BatchNorm BatchNorm

Concatenation on the channel axis
Conv2D(512, 128, 5, 2, “same”)
ReLU
BatchNorm
Conv2D(128, 256, 5, 2, “same”)
ReLU
BatchNorm
Flatten to 1D and Fully Connected
Softmax activaction function

Output: Y Classification

dimensionality of the feature maps. Finally, batch Normalization is applied
to counteract the internal covariate shift, avoid overfitting, and solve the
problem of vanishing gradients.

After the four convolutional blocks, a fully connected layer with some
neurons equal to the number of classes is added. The outputs of this layer
are then converted into the probabilities that the instance belongs to a
certain class through the softmax function. Thus, the output of the network
will be the predicted class that maximizes the aforementioned probabilities.

In this direction, we have designed three different models composed by
parallel branches, which allow to enrichment of the information extracted
by a single serial network. The first one, ParalMGC, takes in input both
MFCCs and GTCCs of the audio under analysis. These features are pro-
cessed by two different branches, each of which consists of the CNN ar-
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Algorithm #0 Algorithm #1 Algorithm #2 Algorithm #3 Algorithm #4 Algorithm #5

Time [s]

GTCC

MFCC

Figure 6.4: Examples of 2D MFCC and GTCC features for each
synthetic audio class.

chitecture without the final dense layer. The two feature maps derived by

the two branches are then concatenated and processed by two convolutional
blocks.

Similarly, DParalMC considers two different branches, each taking in
input the MFCCs of an audio. The first branch is again the CNN architec-
ture deprived of the final layer, while the second one is very similar to the
first since it is equal but the convolutional layers are dilated (with a dilation
factor equal to two) to capture long - term correlations of genuine and syn-
thetic human speech. Again, the two feature maps are concatenated and
processed by two convolutional blocks, each consisting of a convolutional
2D layer with ReLU as an activation function, batch normalization, and
pooling.

In addition, we implement a more complex neural network, DParalMGC,
with three different branches. In particular, DParalMGC consists of two
branches elaborating MFCCs (equal to the two composing ParalMC) and
the last processing GTCCs (similar to the second one of ParalMGC). Fi-
nally, a convolutional block processes the set of features obtained by concate-
nating features extracted from each branch: in this case, only one convolu-
tional block is considered after the combination of the information provided
by the different branches so as to reduce the already high complexity of the
network and thus to prevent overfitting.

Figure 6.3 represents the overall architecture of ParalMGC. Further
details on the network parameters are listed in Table 6.1 where Conv2D(C,,
Cout, k, s, padding) is a generic 2D convolutional layer with Cj, and C,y,
input and output channels, respectively, k is the kernel size, s is the stride,
and padding is the padding technique employed.
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6.2.2 Experiments

The dataset published for the 2022 IEEE Signal Processing Cup has been
used. The synthetic dataset consists of four groups of audio files. The
first group contains 5000 tracks whose labels are associated with five known
generative algorithms. The second group consists of 1000 audio files gener-
ated by an unknown synthesis algorithm. Both groups have been used for
training the developed models. For the first group, the labels varied from
0 to 4, while each audio of the second group is labelled as 5. Regarding
the training and the validation of the developed model, the labelled audios
have been grouped into a single balanced dataset of 6000 audio tracks. The
80% of these audio waveforms has been used for the training process, while
the remaining 20% has been used for validation. This ad-hoc split of the
dataset has been done since the test does not have available labels.

All the methods have been compared, considering the accuracy achieved
on the audio signals of the validation set.

The parameters characterizing the feature extraction have been chosen
to maximize the accuracy on the validation set. In our case, the best window
length for the computation of the STEFT is quite short (512 samples) with
H = 192 overlapping samples. A wider window in the frequency domain
results in the smoothing of the signal’s higher frequencies, thus causing a
low-pass filtering effect. For this reason, a narrower window guarantees
better performance. Furthermore, 40 MFCCs and GTCCs are extracted
from each audio. Figure 6.4 shows an example of each algorithm’s features.
Extracting a larger number of coefficients leads to information redundancy
and, thus, performance degradation.

Given the limited dimensions of the training set, for the architectures
that have shown the best performances on the validation dataset, data aug-
mentation has been performed to increase the ability of the network to gen-
eralize. Different techniques, widely used in the literature [124], have been
applied to augment data from the training set, such as time shifts, volume
gain, pitch shift, stretch in time, white noise addition, and amplitude in-
version (which modifies the phase of the spectrogram). This increases the
number of listeners to be trained and trains the networks with more sophis-
ticated instances that make the architecture more capable of generalization.

The weights of the ParalMGC network have been initialized throughout
the Glorot [125] uniform initialization, which consists in setting the weights
in random values drawn from a uniform distribution with zero mean and
standard deviation, which depends on the dimensions of the features in input
and output of the layer. Adam optimizer has been considered both with
default parameters and with learning rate scheduling, obtained multiplying
every 40 epochs for 0.2 the current learning rate, starting with a value of
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0.001. The network has been trained considering as loss function as the
multi-class categorical cross-entropy.

Table 6.2: Results of the implemented models on the validation

set.
Proposed models ‘ Accuracy
MFCC + CNN 96.7%
MFCC + LSTM 97.1%
GTCC + CNN 95.4%
Chroma + CNN 90.4%
Chroma + LSTM 85.7%

MelSpectrum + CNN 91.3%
Bark-Spectrum + CNN 92.0%
VGGish features + CNN | 93.6%

ParalMGC (ours) 98.1%
ParalMC (ours) 97.9%
DParalMGC (ours) 98.0%

Additional models, concerning the ones previously described, have been
tested for comparison purposes. According to the results, ParalMGC out-
performs the other developed models. The model takes both MFCCs and
GTCCs of the audio as input, and two different branches process the two
different feature sets. Their outputs are then concatenated and provided as
input to the classifier. According to Table 6.2, MFCCs constitute the best
feature set and GTCCs allow to explore a different domain (the Gammatone
one), which enriches the information provided by the MFCCs.

6.2.3 Summary

The synthetic human speech attribution (or audio deepfake) is a well-known
open problem in the audio research community. To solve it, several models
have been developed and tested on three different datasets. Despite the chal-
lenging task, the proposed ParalMGC model has proven to be effective in
achieving promising performances. Table 6.2 shows that the proposed model
reaches an extremely high accuracy (98.1%) on the validation set. However,
real human speech recordings are not present in the dataset. Hence, tests
on a more extended dataset of audio deep fake, ASV spoof 2021 [126], will
be carried out in the future. Another main problem is the open-set sce-
nario. More specifically, classifying new synthetic speech is challenging for
supervised-driven approaches. In this direction, a few-shot continual learn-
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ing, i.e., learning from new audio deepfake algorithms from few samples,
has been considered as a future work.

6.3 Feature Selection for Acoustic
Modeling in Synthetic Dataset

The previous Section focuses on whenever a speech recording is real or syn-
thetically generated. Now, it is possible to perform SDE on genuine speech
data, which involves determining the distance between a sound source and
the receiver. When compared to the DoA estimation, SDE is an area that
has received significantly less attention and is generally considered more
challenging. This is primarily since the accuracy of distance estimation
declines rapidly for small-sized arrays commonly used in practice, even for
relatively short distances from the center of the array (up to 3-4 m). Several
factors contribute to this phenomenon, including:

m the decrease in DRR and SNRs as the source distance increases;

m the reduction in inter-channel level differences and constant inter-
channel time differences as the source transitions from a spherical
wave to a plane wave captured by the array.

The majority of studies related to SDE show results in conjunction
with the DoA estimation task. Extensive research has been conducted on
this subject for various acoustic systems that commonly use distributed
microphone arrays. These systems encompass a range of setups, such as in-
telligent loudspeakers [127], spherical microphones [128], triangular config-
urations [129], and arrays of acoustic sensors [130]. Simpler audio formats,
including binaural recordings, have been investigated to a much lesser ex-
tent, including few studies with classical machine learning methods [99,131]
and very limited research related to deep learning [92,109].

Regarding SDE modeling in isolation, most of the research has been
focused on parametric approaches and manually crafted features. These
methods often utilize information such as the DRR [102], RIR [132], or signal
statistics and binaural cues such as the Interchannel Intensity Difference
(IID) [99]. In some cases, classical machine learning techniques have been
employed to leverage statistical features. For instance, a study by Brendel et
al. estimated the coherent-to-diffuse power ratio to determine the source-
microphone distance via GMMs [101]. Vesa utilized GMMs trained with
Magnitude Squared Coherence (MSC) features to incorporate information
about channel correlation [103,104]. In [133], the authors used MSC on top



CHAPTER 6. CONTINUOUS SPEAKER DISTANCE ESTIMATION IN
102 SINGLE-CHANNEL AUDIO SIGNALS

of other features to train classifiers with methods such as KNNs or Linear
Discriminative Analysis (LDA). Georganti et al. introduced the Binaural
Signal Magnitude Difference Standard Deviation (BSMD-STD) and trained
GMMs and SVMs using this feature [134]. Most of these methods rely
on compound algorithms that require careful tuning to adapt to varying
acoustic conditions.

Until now, the exploration of source distance estimation using DNNs
has been quite limited. Yiwere et al. employed an approach inspired by
image classification, utilizing CRNNs trained on log-mel spectrograms to
classify three different distances in three distinct rooms [106]. Although
the models demonstrated promising outcomes for data within the same en-
vironment, their performance significantly deteriorated when dealing with
recordings from different rooms. In another endeavor, Sobghdel et al. intro-
duced relation networks to address this challenge through few-shot learning,
which exhibited enhancements over conventional CNNs [107]. Both studies
conducted tests within a limited range of specific distances, encompassing
a proximity of up to 3-4 meters at most. In [109], the authors conducted
experiments for data covering distances for up to 8 m, however, the model
was classifying them into two binary classes denoted as “far” and “near”.

Additionally, only a few works have addressed the topic of speaker dis-
tance estimation using single-channel audio. One of the first works employed
low-level features such as LPC, skewness, and kurtosis of the spectrum to
classify the distance of a speaker [111]. Venkatesan et al. proposed both
monaural and binaural features to train GMMs and SVMs [112]. Regard-
ing DNN approaches, Patterson et al. classified “far” and “near” speech to
perform sound source separation from single-channel audios [110].

To the best of our knowledge, single-channel source distance estimation
has been scarcely addressed as a regression problem, prioritizing classifi-
cation approaches to ease model training. In addition, there are very few
studies investigating the use of DNNs in this task.

For the above reasons, a learning-based approach for the continuous es-
timation of the distance of the speaker is proposed. A first step towards
continuous sound source distance estimation is proposed in the next Sec-
tion [135], where a CRNN is defined for estimating static speaker distance
in simulated reverberant environments from a single omnidirectional micro-
phone.

However, this study was evaluated only on simulations, while in the last
Section, various degrees of realism are investigated, from simulated RIRs to
synthetic data with measured RIRs, to fully real recordings with distance-
annotated sources. Hence, the potential of the method in a real-world sce-
nario is demonstrated in the last Section. In addition, the preliminary study



6.3 FEATURE SELECTION FOR ACOUSTIC MODELING IN SYNTHETIC
DATASET 103

was based on a simpler architecture without an investigation of what ar-
chitectural components contributed the most to the SDE, while here, the
architecture is refined and enhanced, with better overall performance and
specific choices investigated in an ablation study.

6.3.1 Definition of the Baseline

Let x[n] be a single-channel audio representing the speech of a single speaker
captured by a microphone in a room with an unknown RIR h[n]. The objec-
tive of this work is to estimate the continuous-valued speaker distance y € R
from the single-channel audio, that is the mapping g(-) : R — R, where
L is the number of samples of the audio recording. To this aim, acoustic
features are extracted using the STFT. To model temporal, spatial, and
spectral features, a CRNN is employed for the experiments. This type of
model has shown promising results in many studies for Sound Event Local-
ization and Detection (SELD) tasks [20,21]. The architecture is depicted
in Figure 6.5.

In more detail, a feature extractor is applied to x[n] to obtain the com-
plex STFT. The transform STFT{z[n]} is computed with a Hanning win-
dow of length 32 ms and 50% overlap with sampling frequency f, = 16
KHz. Then, magnitude |[STFT{z[n]})| and phase ZSTFT{x[n|}) of the
STFET are computed. In addition, we extract the sin&cos features for each
time-frequency point of the STFT raw phase, i.e., sin(ZSTFT{z[n]}) and
cos(ZSTFT{z[n]}), to model the early and late reverberation cues that
characterize the audio. The sin&cos phase representation avoids phase
wrapping and is advantageous over raw phase in several tasks [136, 137].
Finally, the STFT magnitude and the sin&cos features are arranged in a
T x F' x 3 tensor to be processed by the three convolutional layers, where
F and T are the number of frequency and time bins, respectively. By do-
ing so, the three input features are assigned to the convolutional channel
dimension.

Each convolutional block consists of a 2D convolutional layer containing
P =128 1 x 3 filters followed by a batch normalization. Max and average
pooling operations are computed in parallel along the frequency dimension
to be summed. The applied activation function is the ELU [17]. The max
and average pooling rate of each layer is MP = {MP,, MP,, MPs} =
{8,8,2}.

Two bidirectional GRU layers, with tanh(-) as the activation function,
are applied to the feature maps from the convolutional layers. It has shown
promising results in audio and speech processing tasks with fewer parame-
ters than LSTM networks [138]. In fact, in the proposed setup, most of the
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Figure 6.5: Model architecture for speaker distance estimation.
The shape of each output is reported for the sake of
clarity.

information regarding reverberation is extracted from time-wise features.
In this implementation, each GRU has () = 128 neurons for each time bin
T. Finally, three fully connected layers are used to return the predicted
distance y € R. More specifically, the first linear layer projects time-wise
features from the last GRU into a matrix of dimension 7' x R with R = 128.
Then, the second linear layer maps from T x R to a vector of size T" x 1.
Finally, the last fully connected layer is employed to regress the predicted
distance y € R.

The overall architecture is optimized using the MSE loss, as it maximizes
the mutual information between predicted and ground truth distances for
60 epochs using the ADAM optimizer with 16 samples per iteration and
learning rate A = 0.001. Tests on L loss, i.e., MAE, yielded non-converging
training processes.
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6.3.2 Synthetic Dataset

The dataset used for experiments follows the same setup as in [139]. Briefly,
anechoic speech recordings obtained from the TIMIT dataset [140] are con-
volved with the simulated omnidirectional RIRs from an image-source room
simulator for shoebox geometries [141].

This simulator allows for frequency-dependent wall absorption and di-
rectional encoding of image sources in 5" order Ambisonics format. The
elevation range between the source and the receiver spanned from —35° to
35°. To compile a list of materials and their respective absorption coeffi-
cients for each surface type (ceiling, floor, and wall), we refer to widely used
acoustical engineering tables [142]. For each unique simulated room with
its room-source-distance configuration, a random material is assigned to
each surface, resulting in 2912 possible material combinations. Compared
to directly randomizing the target RT60 for each simulated room, this ran-
domization approach allows us to avoid matching unnatural reverberation
times to specific room volumes (e.g., a very long RT60 for a small room)
and ensure a more natural distribution of reverberation times.

The final distribution of reverberation times exhibits a median, 10"
percentile, and 90" percentile of 0.83 s, 0.42 s, and 2.38 s, respectively.
Furthermore, the positions of the sound sources are uniformly distributed
in terms of the azimuth angle relative to the receiver.

The experiments include 2500 audio files of 10 s duration at 16 kHz in
compliance with the speech dataset. The samples are assigned to 5 folds
to assess the performance in a 5-fold cross-validation fashion. By doing so,
each iteration assigns 1500, 500, and 500 audios to training, validation, and
testing sets, respectively. It is worth noticing that the room characteristics
and the speaker are different across all the sets. Therefore, no information
from similar room patterns and speech utterances can be exploited during
training.

Table 6.3: Parameters for data generation.

Parameter Random ranges
Room width and length [3.0,15.0] m
Room height [2.0,7.0] m
# of materials (wall, floor, ceiling) 13,7,8
Source - receiver height [1.5,2.2] m
Source-to-surface distance > 0.5 m
Source-to-receiver distance >1.0m

To assess the performance of the proposed approach under different
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noise levels, real background noise is added to the synthetic dataset. Specif-
ically, environmental noise recordings from the WHAM! [143] dataset, cap-
tured in various urban settings such as restaurants, cafes, and bars, are
employed. Random segments of the same length as the simulated speech
recordings are injected, mirroring the same split as the WHAM! dataset,
with several SNRs levels ([50, 40, 30, 20, 10, 5, 0] dB). Table 6.3 depicts
the range of random parameters for data generation.

6.3.3 Experiments
Clean Speech

Table 6.4: Experimental results on clean speech. All the errors
are in meters.

SNR = 4+
Distance ranges Errors
Eyviar 0.22 +0.03
EMAE[LQ) 0.13 £0.03
EMAE[M) 0.16 +£0.04
Evap,, 0.30 £0.05
EMAE[G,B) 0.30 £0.08
EMAE[S,m) 0.44 +0.14
EMAE[10,14) 0.45+0.18

The proposed approach efficiently estimates speaker distance with an
average error of 22 c¢m, as can be inspected in Table 6.4. However, it is
notable from the scatter plot shown in Figure 6.6 that the predictions are
slightly underestimated when the speaker is more than 7 meters from the
microphone. This behavior is expected since at such distances, the late
reverberant portion of the signal is dominant compared to the direct and
early reflection portion of the signal. These dominant late reverberation
cues are statistically diffuse [144], i.e., short-term magnitudes and phases
resemble noise, and it may be difficult for the model to extract effective
information from them. The reason for late reverberant cues dominating is
that the intensity of the direct and early echo portion of the microphone
signal I is inversely proportional to the square of the distance d, i.e. I d%,
while the signal power of the late reverberant component remains more-or-
less independent of the source and receiver position.

Overall, the model fits the dataset well, as pointed out by the high value
of the coefficient of determination R? between predicted and true distances,
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which is evaluated as: SSR
2
R =1 ST (6.5)
where SSR and SST are the sum squared residuals and the total sum of
squares, respectively.
Table 6.4 depicts the errors in a noiseless environment. In addition,
Figure 6.6 shows the scatter plot between the predicted and ground truth

distance to evaluate the bias of the model.

Scatter plot of test set R2 = 0.9942

Ground Truth distance
o

Predicted distance

Figure 6.6: Scatter plot of predicted and ground truth distances
with STFT and sin&cos as features set with SNR =
+00.

Ablation Study of Acoustic Features

Table 6.5: Ablation studies of acoustic features. All the errors
are in meters.

Eyae Eyapy, ,, Eyvapg ., Ervap, Ervaps, Erapg 1) Eriapgn
[STFT| 0.37+0.04 0244004 0324004 0374002 0544010 0.63+0.11 0.78+0.19
sind&cos 0.16+0.01 0.10+0.01 0.11+0.02 0.24+006 0.194+0.02 0.31+0.08 0.35+0.14

sin&cos + |[STFT| 0.22+0.03 0.13+£0.03 0.16+0.04 0.30+0.05 0.30+0.08 0.44+0.14 0.45+0.18

To study the impact of each feature, an ablation study has been per-
formed. Table 6.5 depicts the MAE for each distance bin with their confi-
dence interval. It is worth noticing that most of the distance information is
represented by the phase of the STF'T. Using only magnitude yields poor
performance over all the distance bins. Contrarily, the configuration using
only the sin&cos input reaches better performances to the proposed feature
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set. However, the same phase-only features perform poorly in the noisy
scenario, yielding higher errors, i.e., random guess, than the combination of
magnitude with the sin&cos phase.

Noisy Speech

To evaluate the performance of the proposed approach at different levels
of noise, real background noise is injected into the simulated dataset. To
this aim, the WHAM! [143] dataset has been exploited. In more detail,
the environmental noise recordings from WHAM! dataset were collected at
various urban locations such as restaurants, cafes, and bars. In addition,
this database was split into training, validation, and testing sets. Following
the same split provided by the WHAM! dataset, background noise samples
are injected randomly into the simulated dataset. More precisely, training
noise affects only training samples of the simulated dataset. This behavior
also occurs for validation and testing scenarios. By doing so, the proposed
approach does not infer information from the same background noise in the
training split.

To assess the effectiveness of the method, 7 SNR values have been de-
fined to measure the quality of the predictions concerning noise strength.
Table 6.6 depicts the MAEs with confidence intervals for each SNR scenario
and for each distance bin. The comparison between noiseless and noisy sce-
narios highlights the large discrepancy of these results. This is mostly due
to the phase information, i.e. sin(ZSTFT{x}) and cos(ZSTFT{x}), which
is disrupted by the background noise.

Table 6.6: Experimental results on noisy speech with fixed SNR
and STFT and sin&cos as features set. All the errors
are in meters.

Eyvae EMAEM) EMAE[“) EMAEH_G) EMAE[G_S) EMAE[&m) EMAE“OAM)
SNR =504 0.904+0.24 0.51+£0.17 0.75+0.15 0.84+0.26 1.22+0.38 2.01+0.82 3.11+£1.01
SNR =40, 1.16+0.09 0.67+0.11 0.95+0.13 1.16+0.11 1.58+0.18 245+0.51 3.96£0.54
SNR = 3045 1.20£0.06 0.75+0.08 0.98+0.09 1.09+0.06 1.64+0.15 2.69+0.32 4.08+0.48
SNR =204 1.254+0.06 0.75+0.03 1.03+0.09 1.124+0.08 1.66+0.14 2.68+0.33 4.47+0.50
SNR = 10,3 1.344+0.02 0.89+0.09 1.11+0.02 1.21+0.12 1.71+0.15 2.77+0.28 4.55+0.23
SNR =545 1.374+0.07 0.974+0.09 1.134+0.11 1.174+0.08 1.704+0.22 2.80+0.21 4.86 +0.37
SNR =04 1.50+0.05 1.344+0.10 1.21+£0.12 1.064+0.12 1.924+0.22 3.39+0.54 544+0.71

Moreover, it is worth noticing that the performance of the proposed
method in low distances, i.e., up to 6 meters, are similar across all SNRs.
However, from that distance and beyond, the error increases rapidly. That
may be due to direct sound and early distinct echoes having more energy
than the late reverberant sound for the majority of our room scenarios.
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In addition, phase-based features, which have been proved to be the
most important information in our clean speech analysis, are severely cor-
rupted even by a tiny amount of noise. For example, direct sound and
echo patterns, which are highlighted by transients in the clean signal, are
smeared in time due to the noise, losing phase coherence across frequencies.

6.3.4 Summary

A novel approach that provides continuous-valued speaker distance estima-
tion from single-channel audio in reverberant rooms has been proposed. The
results of our study have demonstrated that the distance estimation can be
performed using phase-based features, i.e., the sin&cos of the STFT phase
and a CRNN with an average error of 22 cm in a noiseless scenario. How-
ever, the presence of even low-energy ambient noise can affect drastically
the performance of the proposed method. As for future work, one potential
direction is to address how background noise can impact phase-based fea-
tures. As demonstrated from the results, these features are heavily affected
by background noise, impacting the model performance.

6.4 Generalization of Distance Speaker
Estimators

This Section describes the key improvement over the results obtained with
the CRNN architecture proposed in the previous Section. Importantly, we
introduce an attention module designed for identifying the most relevant
time-frequency patterns from the input features in the speaker distance
estimation task. For a fair evaluation of the proposed method, we per-
formed experiments on synthetic data in noiseless and noisy environments.
This allowed for good measurement of performance in controlled environ-
ments. Additional evaluations were carried out for the CRNN with a de-
signed hybrid dataset that consists of measured RIRs convolved with ane-
choic speeches and with two real-world recording datasets. In addition, two
datasets encompassing real recordings were employed to assess the perfor-
mance in scenarios where no control of the environment is possible. Finally,
a cross-dataset analysis across scenarios, both with and without fine-tuning,
demonstrates how the nature of RIR can impact the distance estimation
task.
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6.4.1 Attention Module and Baseline Revision

First, acoustic features are extracted from the single-channel audio. As
done in the previous Section, 3 maps (magnitude of the STFT, sinus, and
cosinus of the STFT phase) are obtained with shape T x F', where T and F
are the time and frequency bins, respectively. Then, the maps are stacked
along the channel dimension, resulting in a feature tensor of size T' x F' X
3. To highlight the feature regions that are most informative for distance
estimation, an attention map is learned from the three-channel tensor, which
is then element-wise multiplied with the input feature tensor.

One of the main contributions of this work is the definition of an atten-
tion module that computes an attention map H € RT7*¥*3 from the audio
features. The objective of this learned matrix is to emphasize the regions
of the features that are most informative for the estimation of the distance.
Specifically, this module is the function fypr : RT*FX3 5 R Tts
structure is composed of 2 convolutional blocks, having 16 and 64 3 x 3
filters, respectively. Then, a 1 x 1 convolutional layer with three filters,
followed by a sigmoid activation, is used to map the features to yield the
T x F x 3 attention map. Finally, the output acoustic features X € RT*¥x3
are obtained by element-wise multiplication (®) between the input acoustic
features and the attention map as

X = farr(X) ® X. (6.6)

Regarding the convolutional layers, we optimized the architecture to be
low-complexity. In more detail, the structure of each block involves a 2D
convolutional layer comprising P; 1 x 3 filters, i.e., along the frequency axis
with values of 8, 32, and 128 assigned to the respective layers, differently
from the previous version where all the convolutional layers encompassed
128 filters. We denote these filters as frequency kernels, whereas 3 x 1
filters are named time kernels. Square kernels, known for their capability to
capture time-frequency patterns, are commonly used in convolutional layers
applied to spectrograms due to their effectiveness in capturing local patterns
and structures along the frequency axis. In this work, the proposed model
adopts rectangular filters, and temporal information is modeled by recurrent
layers at the end of the model. Rectangular filters can be more parameter-
efficient compared to square kernels. Since the former has fewer parameters
than square kernels of the same receptive field size, they can lead to a
more compact model, making training and inference more computationally
efficient and potentially reducing the risk of overfitting, especially when
working with limited data.

Examples of noiseless and noisy spectrograms and attention maps are
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Figure 6.7: Example of spectrograms and attention maps on a
speaker talking at 10 meters. First row is at SNR =
0 dB, second row is at SNR = 30 dB, and last row
is at SNR = 400, i.e., noiseless scenario.

depicted in Figure 6.7. It is worth highlighting how the attention module
focuses differently on the parts of the signal where the speech is most likely
to stand out from the noise or where the characteristics of the speech are
still recognizable. The attention map in a noiseless case is evenly distributed
across the entire frequency range since no noise interferes.

To process the feature maps from the convolutional layers, two bidirec-
tional GRU layers are utilized with tanh(-) as the activation function. These
layers have exhibited promising results in audio and speech processing tasks,
demonstrating parameter efficiency compared to LSTM networks [138].

The output of the CNN with shape T" x 2 x P is stacked along the
channel dimension to produce a T" x () matrix to be fed to the recurrent
layers. Then, in the proposed configuration, the extraction of reverberation-
related information primarily relies on integrating information over time
with the recurrent layers. Within this implementation, two bi-directional
GRUs with () = 2P = 128 neurons each for every time frame are employed.

Then, to predict the distance, three fully connected layers are employed,

where an independent mapping between each time frame is performed in
each layer. Firstly, the initial linear layer projects time-wise features from
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the last GRU onto a matrix of dimensions T X R, where R = 128. Subse-
quently, the second linear layer independently maps each time frame of the
T x R matrix onto a vector of size T' x 1, denoted as the time-wise distance
estimation y. Specifically, this vector represents the distance estimation
for each time frame. Finally, the last fully connected layer is employed to
perform regression and thus estimate the predicted distance, denoted as
y e R.
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Figure 6.8: Proposed architecture for speaker distance estima-
tion.

The overall revised model can be inspected in Figure 6.8.

The MSE loss is used to train the DNN system. Let y € R be the true
distance of a static sound source. In addition, let y € RT>*! be the vector
consisting of frame-wise ground truth distances. Then, the loss used in the
training phase for a single sample is

Ly, 0,569 = (v =9 +lye = 9ll%, (6.7)

where the loss is averaged across the batch dimension to be exploited by
the backpropagation algorithm. Thanks to the imposition of the loss, the
model predicts a distance for each time bin and, from this information, a
single-valued distance. Having two losses in a static source scenario operates
as a regularization term since it forces the proposed approach to return
coherently both time-wise and single-distance estimations. However, in the
context of dynamic sound sources, it is important to highlight that only
frame-wise loss is required.
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6.4.2 Hybrid Dataset

The RIRs used in the hybrid dataset, contained in the CADM RIR database [145],
were measured in three rooms located at Queen Mary, University of London,
London, UK. A Genelec 8250A loudspeaker was employed as the source for
measuring all IRs, while each receiver position was measured using both an
omnidirectional DPA 4006 and a B-format Soundfield SPS422B.

A collection of 130 RIRs was captured in a classroom with dimensions
7.5x9x 3.5 m (236 m?) and consist of reflective surfaces such as a linoleum
floor, painted plaster walls, ceiling, and a sizable whiteboard.

The second room, denoted as the Octagon, is a Victorian structure that
was finalized in 1888. Presently serving as a conference venue, the walls of
this building still showcase book-lined interiors, complemented by a wooden
floor and plaster ceiling. As the name implies, this room features eight walls,
each measuring 7.5 m in length, and a domed ceiling towering 21 m above
the floor, resulting in an estimated volume of 9500 m®. In the center of the
room, a total of 169 RIRs were measured.

The third room is The Great Hall, which possesses a seating capacity
of approximately 800. It encompasses a stage and seating sections both on
the floor and on a balcony. To capture the audio, the microphones were
positioned within the cleared seating area on the floor, spanning an area of
approximately 23 x 16 m. The microphone placements mirror the layout
used for the Octagon, encompassing 169 RIRs over a 12 x 12 m region.

Following the same setup of the synthetic dataset, anechoic speech
recordings are convolved from TIMIT [140], and real background noises
from WHAM! [143] are added with the measured RIRs, generating the hy-
brid QMULTIMIT dataset. For each RIR, 5 random speech recordings
are selected from the TIMIT dataset, yielding 2340 audio files. RIRs are
randomly divided into training, validation, and testing splits following a
percentage ratio of 70-10-20. Finally, the MAE errors averaged across all
the distance bins are provided.

6.4.3 Real Datasets

VoiceHome-2 [146]. This dataset is specifically made for distant speech
processing applications in domestic environments. It consists of short com-
mands for smart home devices in French, collected in reverberant conditions
and uttered by twelve native French speakers facing the microphone. The
data is recorded in twelve different rooms corresponding to four houses,
with fully annotated geometry, under quiet or noisy conditions. More
precisely, VoiceHome-2 includes everyday noise sources (with no annota-
tions regarding their SNRs) such as competing talkers, TV /radio, footsteps,
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doors, kitchenware, and electrical appliances. Five speaker positions per
room, comprising standing and sitting postures, are selected to encompass
a broad range of angles and distances concerning the microphone array,
which maintains a single, fixed position throughout all the room recordings.
The sound is then captured by a microphone array consisting of eight Micro-
ElectroMechanical Systems (MEMS) placed near the corner of a cubic baffle.
For this study, only the first channel has been extracted. Regarding room
acoustics, to obtain the impulse responses, recordings of a 6-second chirp
from 0 to 8 kHz were processed. The chirp was played by a loudspeaker
in each room, and recordings were performed for two different positions
of the microphone array and seven to nine different positions of the loud-
speaker. These positions spanned a range of angles and were distributed
logarithmically across distance. The recordings were then convolved with
the inverse chirp to obtain the estimated room impulse responses. Addi-
tionally, in each of the twelve rooms, five complex, everyday noise scenes
relevant to the function of the room were recorded. These scenes included
background speech, television sounds, footsteps, meal preparation noises,
shutters opening or closing, water flowing, and more. The recordings were
made at the same two array positions as mentioned earlier. It is important
to note that the noise sources varied across the different homes.

In total, VoiceHome-2 encompasses 752 audio recordings, lasting ap-
proximately 10 seconds for all the twelve rooms and the five noise scenes. It
is important to highlight that the experiments in this work do not involve
any information regarding either raw RIR or injected noise, emulating an
on-field recording. The dataset is then randomly split using a percentage
ratio of 70-10-20 training, validation, and testing splits, respectively, for the
experiments.

STARSS22 [147]. The dataset includes recordings of human inter-
action scenes with spatio-temporal event annotations for thirteen target
classes, primarily focusing on speech. It is part of the DCASE Challenge
2022 Task 3 development set. The recordings were made at two sites, Tam-
pere University in Finland and Sony headquarters in Japan, in a total of
eleven rooms maintaining a consistent organization and procedure regard-
ing equipment, recording, and annotations. The dataset utilizes the Eigen-
mike spherical microphone array, offering two spatial formats. One format
involves a tetrahedral sub-array of omnidirectional microphones mounted
on a rigid spherical baffle. The corpus is more challenging compared to
the other datasets due to the natural movement and orientation of multi-
ple speakers during discussions, as well as the presence of intentional and
unintentional sound events other than speech. It also contains diffuse and
directional ambient noise at significant levels. Finally, audio data from a sin-
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gle microphone of the Eigenmike array has been processed, extracting 2934
two-second single-speech excerpts that do not overlap with other annotated
directional sources. As done before with the other datasets, STARSS22 is
split using a percentage ratio of 70-10-20 training, validation, and testing
splits, respectively.
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Figure 6.9: Distributions of distances in each dataset.

It is worth noticing that, as can be inspected in Figure 6.9, real dataset
distances are differently distributed with respect to the synthetic and hybrid
ones. The motivations of this behavior are as follows:

m in many real-world scenarios, as in STARSS23 [148], sound sources
are not always at a fixed distance from the recording device;

m different recording environments can introduce variations in the speaker
distance distribution. For example, in a controlled studio setting,
speakers may be positioned at specific distances from the microphone
to achieve the desired sound characteristics. In contrast, field record-
ings or recordings made in everyday settings can have a wider range of
distances due to the uncontrollable nature of the environment. Indeed,



CHAPTER 6. CONTINUOUS SPEAKER DISTANCE ESTIMATION IN
116 SINGLE-CHANNEL AUDIO SIGNALS

in this context, VoiceHome-2 [146] has been recorded in a domestic
environment whereas STARSS23 [147] has been collected in office-like
environments;

m audio datasets are often curated to suit specific applications or scenar-
ios. For instance, a dataset focused on speaker recognition in far-field
scenarios may deliberately include more examples with distant speak-
ers to simulate real-world challenges. On the other hand, a dataset for
speech enhancement in close-proximity situations may prioritize exam-
ples with close speaker distances. VoiceHome - 2 has been curately de-
signed for enhancing distant-microphone speech, whereas STARSS23
focuses on SELD, yielding dissimilar distance distributions.

Accordingly, with the distributions of distances in real scenarios, the dis-
tance bins used are {[1,2),[2,2.5),[2.5,3),[3,3.5),[3.5,4), [4,4.5)} meters.
The final MAE errors are averaged using a percentage ratio of 70-10-20
training, validation, and testing splits, respectively.

6.4.4 Experiments

This Section describes how the performance assessment of the proposed
approach has been carried out. To validate the work, three levels of realism
have been addressed in the scope of speaker distance estimation:

m Synthetic: simulated RIRs of an image-source room simulator are
convolved with anechoic speech;

» Hybrid: measured RIRs are convolved with anechoic speech;
m Real: on-field reverberant speech recordings.

Figure 6.9 depicts the histograms of distances in each dataset employed in
the experimental results.

Clean Speech

The proposed approach efficiently estimates speaker distance with an aver-
age error of 11 cm in a noiseless scenario, as can be inspected from Table 6.7.
Since there is no other published method that attempts regression-based
SDE with a single microphone, for comparison purposes, results on binau-
ral SDE are presented following the recently published work of [100]. The
binaural estimation model is similar to the CRNN model used herein. A
similar simulator, range of acoustic conditions, and number of rooms was
used in [100] as herein. The same spectrogram and binaural features are



6.4 GENERALIZATION OF DISTANCE SPEAKER ESTIMATORS 117

also used as in the original work. The binaural estimation results (86 cm)
we obtain are, on average, better than the ones in [100] (151 cm), with
the improvement most likely attributed to the use of the attention layers.
However, the most striking difference is that of the monophonic omnidirec-
tional results (11 cm) versus the binaural ones (86 cm). It seems that the
complex frequency, direction, and orientation-dependent effects imposed by
Head-Related Transfer Functions (HRTFs) make it harder for the model to
associate spectrotemporal reverberation patterns with the source distance.
However, a definite conclusion on differences between single-channel omni-
directional versus binaural SDE requires further study.

An increasing trend of the errors with respect to the distance is notable.
This behavior is expected due to the dominant influence of the late reverber-
ant component compared to the direct and early reflection components of
the signal at long distances. These late reverberation cues exhibit statistical
diffusion [144], meaning that short-term magnitudes and phases resemble
noise-like characteristics. Consequently, extracting meaningful information
from these dominant late reverberation cues may pose challenges for the
model in effectively estimating speaker distance.

Such behaviour is demonstrated in Figure 6.10. Considering that the
balance between direct speech energy versus early and late reverberant en-
ergy is exemplified in the DRR, measured from the simulated RIRs, it is
clear that dominance of the reverberation at low DRRs impacts negatively
distance estimation. There seems to be an optimum balance where both
direct sound and reverberation contribute to estimation, after which direct
sound can start to mask reverberation-related cues for higher DRRs, with
a subsequent small drop in performance. A closer investigation of distance
estimation at very high DRRs or very small distances at the near-field of
the microphone is left for future work.
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Table 6.7: Hyperparameters selection on the synthetic dataset with clean speech. The gray row highlights
the proposed approach.

] Average 1,2 2,4 4,8 8,14)

Kernels # params # GRUs L 'Ly L 1.2) > L 2:9) oL L [4.8) 'L L ﬁ 'Ly

Binaural [100] 650 k 2 0.86+0.10 0.29+0.05 | 1.06+0.35 0.72+0.22 | 0.70£0.13 0.254+0.05 | 0.81+0.10 0.15+£0.02 | 1.34+0.61 0.13+£0.05
Time 123 k 0 0.554+0.02 0.18+0.01 | 0.50+0.04 0.35+0.03 | 0.50£0.03 0.18+0.01 | 0.57+0.03 0.11+£0.01 | 0.79+0.09 0.08 £0.01
Squared 149 k 0 0.70+0.02 0.23+0.01 | 0.59+0.04 0.42+0.03 | 0.684+0.04 0.244+0.01 | 0.71+0.04 0.134+0.01 1.03+£0.12 0.11+£0.01
Frequency 123 k 0 0.86+0.03 0.30+0.01 | 0.83+£0.05 0.60+£0.04 | 0.804+0.04 0.284+0.02 | 0.86+0.04 0.16 +0.01 1.17+0.14 0.12+£0.01
Time 353 k 1 0.16+0.01 0.05+0.00 | 0.15+0.01 0.11£0.01 | 0.13£0.01 0.054+0.00 | 0.194+0.01 0.03+0.00 | 0.27+0.03 0.03 £ 0.00
Squared 379 k 1 0.154+0.01 0.05+0.00 | 0.13+0.01 0.09+0.01 | 0.11£0.01 0.04+0.00 | 0.16 £0.01 0.03+0.00 | 0.27+0.04 0.03£0.00
Frequency 353 k 1 0.134+0.01 0.04+0.00 | 0.12+0.01 0.08+0.01| 0.10+£0.01 0.044+0.00 | 0.13+0.01 0.02+0.00 | 0.24+0.04 0.02+0.00
Time 650 k 2 0.134+0.01 0.044+0.00 | 0.124+0.01 0.09+0.01 0.10+£0.01  0.04£0.00 | 0.134+0.01 0.024+0.00 | 0.24 +0.07 0.02+0.01
Squared 676 k 2 0.11+£0.00 0.04+0.00 | 0.12+£0.01 0.08+0.01 | 0.09£0.00 0.03+0.00 | 0.12£0.01 0.02+£0.00 | 0.18£0.03 0.02+0.00
Frequency 650 k 2 0.11+0.00 0.04+0.00 | 0.12+0.01 0.08+0.01 | 0.10£+0.00 0.03+0.00 | 0.11 +0.01 0.02+0.00 0.16 +£0.02 0.02 £ 0.00
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Figure 6.10: Relation between DRR and L;.

Moreover, the results of the study demonstrate that the GRU layers play
a crucial role in the model’s performance. The GRU layers likely contribute
to the model’s ability to capture sequential patterns and dependencies ef-
fectively. Additionally, the study found that using rectangular kernels, as
opposed to square kernels, in combination with GRU layers improves the
model’s efficiency. In this scenario, the rectangular kernels are better at
capturing different types of patterns and features in the data, leading to
more effective and efficient information processing within the model. This
statement, however, does not hold when no GRU layers are present.

In addition, it is worth noting that using a single GRU layer slightly
impacts the overall performance of the proposed approach, approximately
halving the number of learnable parameters.

Noisy Speech

To assess the quality of the predictions about noise strength, seven SNR val-
ues have been specifically chosen during training. More precisely, a separate
model is trained from scratch for each SNR level.

Table 6.8 depicts the results where a notable discrepancy between the
noiseless and noisy scenarios becomes evident. This divergence is primarily
attributed to the disruptive influence of background noise on the phase
information [135], which has also been demonstrated in speech enhancement
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Table 6.8: Experimental results on noisy synthetic data with
fixed SNR and frequency kernels. The gray row high-
lights the proposed approach.

SNR Feature set L4 rLq
w/[STFT] 048 £0.02 0.14 = 0.01
50 dB w/sinus and cosinus 0.37£0.02 0.11+0.01
|STET| + sinus and cosinus | 0.41+0.02  0.12 £ 0.00
w/|STFT] 0.77£0.03 0.21 + 0.01
40 dB w /sinus and cosinus 0.71£0.03 0.21 +0.01
[STET| + sinus and cosinus | 0.87 +£0.04  0.24 +0.01
w/|STFT| 1.11+£0.04 0.30+0.01
30 dB w/sinus and cosinus 1.51+£0.06 0.45+0.02
[STFT| 4 sinus and cosinus | 1.14+0.04 0.31 £0.01
w/|STFT| 1.20£0.04 0.33+0.01
20 dB w/sinus and cosinus 1.76 £0.06  0.56 £ 0.02
|STFT| 4 sinus and cosinus | 1.21+0.05 0.33 £0.01
w/|STFT] 1.30£0.05 0.36 £0.01
10 dB w/sinus and cosinus 1.70 £0.06  0.56 £ 0.02
|STFT| + sinus and cosinus | 1.27 +0.05 0.35+0.01
w/|STFT] 1.34£0.05 0.38 £ 0.01
5 dB w/sinus and cosinus 1.73£0.06 0.58 £0.02
|STET| + sinus and cosinus | 1.26 +0.05 0.34 +0.01
w/|STFT] 147 £0.05 0.44 £ 0.02
0dB w/sinus and cosinus 1.77£0.06 0.61+£0.02
|STET| + sinus and cosinus | 1.39 +0.05 0.42 + 0.02

studies [149].

It is worth noting from Figure 6.11 that the performance of the proposed
method remains consistent across all SNR levels for distances up to 6 meters.
However, beyond this distance, the error increases rapidly. This behavior
can be attributed to the quadratic inverse relationship between distance
and sound intensity, i.e., Iy d%. Due to this physical behavior, the direct
sound and early distinct echoes exhibit similar energy levels compared to
the late reverberant cues, hindering long-distance information.

Hybrid Speech

As done with the synthetic dataset, five SNR values have been selected to
assess the performance of the proposed architecture by training a separate
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Figure 6.11: Comparison between noisy and noiseless perfor-
mance of the proposed approach on the synthetic
dataset.

model from scratch for each SNR level. Table 6.9 shows the experimental
results, highlighting the superiority of the chosen configuration.

The notation [30,+00) dB denotes the results of the model both in
noiseless case and with at most 30 dB of SNR. It is worth noting that,
differently from the synthetic scenario, the impact of background noise is
smaller even at low SNR. Comparing Table 6.8 with Table 6.9, it is evident
how synthetic RIRs are more affected by noise at higher SNR with respect
to measured ones.

Interestingly, the use of only sinus and cosinus maps yields poor perfor-
mance at all SNRs levels, whereas the STFT magnitude is essential for the
task. This result agrees with the previous study [135] where the use of only
sinus and cosinus features in noisy audio recordings is ineffective.

Real speech

Table 6.10 and Table 6.11 depict the results on VoiceHome - 2 [146] and
STARSS23 [147], respectively.
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Table 6.9: Distance estimation errors for the QMULTIMIT hy-
brid dataset. Gray row highlights the proposed ap-
proach. All features are used if not mentioned

SNR Hyperparameters # GRUs L, rLly
Time 0 2494+0.16 0.28£0.02
Squared 0 2.384+0.15 0.25+0.02
Frequency 0 297+0.17 0.33£0.03

Time 1 1.58 £0.12  0.16 £0.01
Squared 1 1.52+£0.12 0.15+£0.01
[30,4+00) dB  Frequency 1 1.68+0.12 0.17+0.01
Time 2 1.70+£0.12  0.17+0.01
Squared 2 1.48+£0.13 0.14 +£0.01
Freq. w/|STFT]| 2 1.67£0.13 0.17+0.01
Freq. w/sinus and cosinus 2 2.17+0.14 0.23£0.02
Frequency 2 1.52+0.12 0.15£0.01
Time 0 2.22+0.15 0.24+£0.02
Squared 0 236 £0.15 0.25£0.02
Frequency 0 2.88+0.17 0.324+0.02
Time 1.67+£0.12  0.16 £0.01
Squared 146 £0.12 0.14+0.01

20 dB Frequency
Time
Squared
Freq. w/|STFT]|
Freq. w/sinus and cosinus

1.714+0.12  0.1740.01
1.66+0.13  0.16 +0.01
1.60+0.13  0.16 £ 0.01
1.64+0.13 0.16 £ 0.01
1.984+0.13  0.21 £0.02

1
1
1
2
2
2
2
2
Time 0 2234+0.14 0.24£0.02
0
0
1
1
1
2
2

Frequency 148 £0.11 0.14+0.01
Squared 220+£0.14 0.244+0.02
Frequency 2.55+0.14 0.28+0.02
Time 1.714+0.12  0.1740.01
Squared 1.584+0.13 0.16+0.01
10 dB Frequency 1.604+0.12 0.16+0.01
Time 1.65+0.12 0.16 £0.01
Squared 1.56 £0.13 0.15+0.01

Freq. w/|STFT)
Freq. w/sinus and cosinus

1.55+0.12 0.15+0.01
1.974+0.12  0.214+0.01

Frequency 1.65+0.13 0.17£0.01
Time 2.54+0.14 0.28+0.02
Squared 2.74+0.15 0.30 £0.02
Frequency 3.01+£0.15 0.33+£0.02
Time 1.75+£0.12 0.18+£0.01
Squared 1.83£0.12 0.194+0.01
0dB Frequency 1.82+£0.13 0.19+£0.01
Time 246+0.15 0.23+0.01
Squared 1.98+£0.12 0.214+0.02
Freq. w/|STFT) 1.63+0.13 0.17+0.01
Frequency 1.66+0.13 0.17+0.01
Time 3.03+£0.14 0.34+0.03
Squared 3.03+0.14 0.33+0.02

3.04£0.14 0.33£0.02
3.02+£0.14 0.33£0.02
3.01£0.14 0.33£0.03
3.00£0.14 0.33£0.03
3.06£0.14 0.34£0.03
2.57+£0.13  0.28+0.02
2.284+0.13 0.25+0.02
3.01+0.14 0.33+£0.03
2.34+0.13 0.25+0.02

Frequency
Time
Squared
—10 dB Frequency
Time
Squared
Freq. w/|STFT)|
Freq. w/sinus and cosinus
Frequency

2
2
2
0
0
0
1
1
1
2
2
2
Freq. w/sinus and cosinus 2 2244013 0.25+0.02
2
0
0
0
1
1
1
2
2
2
2
2
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Following the same rationale of the synthetic and hybrid scenarios, the
selected configuration outperforms the other models. The results obtained
from the analysis of real data demonstrate the clear superiority of the
proposed model in accurately estimating distances. Across both datasets,
the proposed model consistently outperforms different configurations of the
models, showcasing its robustness and effectiveness. However, it is worth
noting that a few outliers surfaced in the results, particularly within the
VoiceHome - 2 dataset, where large confidence intervals are present. This
occurrence can be attributed to the limited size of the datasets as the model
overfits the training dataset. With a larger dataset, these outliers are ex-
pected to be mitigated, and the model’s performance is likely to become
even more reliable and precise. This observation underscores the potential
for further advancement in distance estimation when working with more
extensive datasets.
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Table 6.12: Cross-dataset generalization tests without finetun-

ing.
Test w/o finetuning

o0 Synthetic | Hybrid Real

£ Synthetic | 0.11 +0.00 | 4.28 +0.45 | 4.14 + 0.08

-% Hybrid |6.80+£0.59 | 1.524+0.12 | 3.76 &+ 0.56

; Real 2.26 £0.38 | 8.22£0.54 | 0.42+£0.02

Table 6.13: Cross-dataset generalization tests with finetuning.

Test w/ finetuning

o0 Synthetic | Hybrid Real

.8 Synthetic | 0.11 +£0.00 | 1.57 £ 0.23 | 0.47 £ 0.05
-% Hybrid | 0.18 +0.04 | 1.52£0.12 | 0.45 % 0.05
= Real 0.11£0.02 | 1.54+0.22 | 0.42 £ 0.02

Tests have been carried out in a cross-corpus training-testing setup,
e.g., synthetic-hybrid, synthetic-real, hybrid-real, VoiceHome-STARSS. The
model yields very large errors in case no finetuning is performed, as it can be
inspected in Table 6.12. This behavior highlights the discrepancy of feature
patterns among different acoustic scenarios, levels of acoustical realism, and
different distance distributions. If the model is fine-tuned to a different
realistic scenario, the performance is slightly worse that the case when the
model starts with random weights. The results of this situation is shown in
Table 6.13.

To demonstrate the effectiveness of the attention module, an ablation
study is performed on all the scenarios. First, performance assessment is
carried out without the module. Then, instead of returning a 7' x F' x 3
matrix, a spectrogram attention map, i.e., T' X F', is learned by a module.
Then, an element-wise multiplication is performed between the magnitude
of the STF'T and the attention map.

These three modalities are analyzed in Table 6.14, depicting the errors
for each bin with their confidence intervals. Predicting an attention map
for each feature provides better distance estimation on average. Moreover,
the results demonstrate that all the approaches perform similarly in the
short range, up to 8 meters. Conversely, applying the attention map on
each of the feature maps in the feature set produces better outcomes in the
long range with respect to the other two cases. When the speaker is far
from the microphone, the learned attention maps enhance the features set,
facilitating the extraction of features of the convolutional layers. Indeed, as
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the distance between the speaker and the microphone increases, detecting
these patterns becomes more challenging due to their reduced salience [144].

Moreover, an ablation study has been carried out also on the hybrid and
real data, as it can be inspected in Table 6.15. The attention map yields the
best performance in the hybrid case when it is only applied to the STFT
magnitude channel. This fact highlights the ineffectiveness of phase features
in this specific use case. Instead, the results demonstrate the superiority of
the attention map applied to all the channels in the real scenario.

Table 6.14: Ablation study of attention map using frequency
kernels on synthetic data with clean speech. The
gray row highlights the proposed approach.

Average [1,2) [2,4) [4.8) [8,14)
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly
None 0.14+0.01  0.05+0.00 | 0.134+0.01 0.094+0.01 | 0.1240.01  0.0440.00 | 0.154+0.01 0.03+£0.00 | 0.284+0.05 0.03 4 0.00
on spectrogram | 0.124+0.00 0.04 £0.00 | 0.124+0.01 0.08+0.01 | 0.10+0.01 0.044+0.00 | 0.13£0.01 0.024+0.00 | 0.22+0.03 0.02 £ 0.00
on everything | 0.11+0.00 0.04+0.00 | 0.12+0.01 0.08+0.01 | 0.10+0.00 0.03+0.00 0.11+0.01 0.02+0.00 0.16+0.02 0.02+ 0.00

Attention

Table 6.15: Ablation study of attention map using frequency
kernels on hybrid and real data. Gray row highlights
the proposed approach.

Attention QMULTIMIT VoiceHome - 2 STARSS22
[/1 I'L:] [,1 I'E] L"l rL"l
None 2.01£0.06 0.21+£0.01 0.78+0.09 0.40 £+ 0.06 0.454+0.02 0.20+£0.01

on spectrogram | 1.87+£0.06 0.19+£0.01 | 0.73+0.10 0.36£0.06 | 0.454+0.02 0.20+0.01
on everything | 1.90 £0.06 0.20£0.01 | 0.63+0.08 0.32+0.05 | 0.42+0.02 0.19 £0.01

6.4.5 Discussion

From the results of the noisy scenario in the synthetic dataset, it is im-
portant to highlight that even a minimal amount of noise severely corrupts
phase-based features, which have been identified as the most critical infor-
mation in our analysis of clean speech. For instance, the presence of direct
sound and echo patterns, characterized by transients in the clean signal, be-
comes blurred over time due to the presence of noise and late reverberation,
resulting in a loss of phase coherence across frequencies. This behavior,
however, does not occur in the hybrid dataset where the effect of high SNR
in the recordings does not correspond to a similar increase in estimation
performance. That may be due to the recordings of the RIRs having a level
of inherent measurement noise, which limits the effective SNR that we can
achieve in the hybrid simulations.
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The imposition of the loss in Equation (6.7) is required for predicting
a time-wise distance vector. Due to the lack of baselines and datasets in
the literature, only a single value of distance of the sound source is as-
signed for each time bin to ease the distance tracking task. Generally, this
characteristic in audio datasets is referred to as weak labels [150]. With-
out time-wise distance references, denoted as strong labels, the model faces
challenges in fine-tuning its predictions, decreasing its overall performance.
This scenario has been studied in the literature for tasks that require a fine
temporal resolution output, such as SED [44] and SELD [151].

Furthermore, it is important to acknowledge that certain portions of
the audio data encompass segments where speech information is absent or
indiscernible. Consequently, this scarcity of informative speech content can
considerably undermine the effectiveness and reliability of predictors.

In this direction, the proposed attention module can improve the ability
of the model (Tab. 6.15) to identify the speech information that is relevant
for the estimation of the distance. However, it is important to note that
the attention module is learned by the model itself, without any direct
supervision.

To address these limitations, a potential avenue for improvement emerges,
centering around the generation of more comprehensive and fine-grained la-
bels. By augmenting the dataset with strong labels that introduces both
speech activity and speaker distance estimation, the model may acquire a
better understanding of the room acoustics. In addition, this augmenta-
tion enables the model to leverage additional contextual cues and refine
its predictions, enhancing its performance in accurately estimating speaker
distances and capturing the dynamics of speech activity.

Moreover, one of the key areas for improvement is the availability of
larger datasets of real recordings with a greater number of rooms and vari-
ous speaker-microphone configurations. A larger dataset would enable the
model to learn more diverse and representative acoustic characteristics, lead-
ing to improved performance in distance estimation tasks. Moreover, it
could also improve the generalization ability of the approach, as it has been
demonstrated how the performance of the proposed model is dependent on
the nature of the audio recording (synthetic, hybrid or real). Additionally,
by including different room types and microphone placements, the model
can better generalize across various real-world scenarios. Furthermore, the
use of a transformer-based [152] approach could be explored, leveraging a
larger amount of data. Transformer models have shown remarkable suc-
cess in various natural language processing tasks and have the potential
to capture complex patterns and dependencies in acoustic data. Exploit-
ing transformer architectures could enhance the model’s ability to estimate
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distances accurately.

Another possibility for future research is the integration of time-wise
distance ground truth, as previously mentioned in the discussion section.
By considering temporal information in addition to spatial cues, the model
could potentially estimate the distance of a sound source more accurately.
This would provide valuable insights in scenarios where multiple sound
sources are present. Estimating and tracking the distance of a moving source
is an application of interest that is scarcely explored in the literature.

6.4.6 Summary

This work has explored the task of speaker distance estimation in noisy
and reverberant environments. Multiple configurations, in terms of kernel
size and recurrent layers of the model, have been provided, motivating the
proposed architecture. The use of rectangular filters across the frequency
dimension and the presence of GRUs layers yields the best performance
in terms of distance errors. The experimental results obtained from the
proposed model have demonstrated remarkable precision in scenarios where
several types of RIRs are employed. In a noiseless synthetic scenario where
RIRs have been generated with a room-source simulator, the model has
achieved an absolute error of only 0.11 meters. With recorded RIRs, an
absolute error of about 1.30 meters has been obtained. In the real sce-
nario with on-field recordings, where unpredictable environmental factors
and noise were prevalent, the model yielded an absolute error of approx-
imately 0.50 meters. These results underscore the model’s resilience and
its capacity to effectively manage various realistic scenarios. Variations in
performance across these scenarios can be attributed to differences in the
distribution of acoustic parameters, such as the distance from the sound
source. Analysis on moving sound sources in single-channel recordings will
be carried out as a future work.

6.5 Conclusion

The content of this Chapter is associated with the following publications:

s Michael Neri, A. Ferrarotti, L. de Luisa, A. Salimbeni, and M. Carli,
“ParalMGC: Multiple Audio Representations for Synthetic Human
Speech Attribution”, in: 10th Furopean Workshop on Visual Infor-
mation Processing (EUVIP), 2022 [64].

s Michael Neri, A. Politis, D. Krause, M. Carli, and T. Virtanen,
“Single-Channel Speaker Distance Estimation in Reverberant Envi-
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ronments”, in: IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), 2023 [135].

s Michael Neri, A. Politis, D. Krause, M. Carli, and T. Virtanen,
“Speaker Distance Estimation in Enclosures from Single-Channel Au-
dio”, in: IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2024 [51].



Chapter 7

Conclusions and Future
Perspectives

7.1 Introduction

This Thesis was structured around the exploration of Al techniques applied
to sound-based scene understanding. Fach one of the Chapters presented
important improvements in the development of low-complexity models that
can face real acoustic challenges. The Thesis began with an introduction to
the motivation and objectives of the research (Chapter 1). Specifically, it
highlighted the main challenges involved in the design of computationally
efficient AT models, which are suitable for real-time processing in resource-
constrained environments.

Then, the background chapter outlined the bases upon which the re-
search had been conducted (Chapter 2). It discussed basic principles related
to how audio signals are typically represented in the state-of-the-art. These
basic principles included the fields of room acoustics and the realms of time-
frequency transformations. Moreover, this Chapter introduced the main Al
methodologies -machine learning, deep learning, and neural networks- to be
used in sound event recognition. At the same time, this Chapter helps the
reader theoretically to be prepared for the models and techniques that will
be further carried out in this Thesis.

Chapter 3 addressed the problem of ASC, proposing a novel model
using Chebyshev polynomials and moments for feature extraction. This
method encompasses a good balance between performance and computation
efficiency and, thus, is suitable to be deployed in an environment where real-
time processing is crucial.
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Chapter 4 changed the focus to UASD and proposed an attention-based
model to improve the detection of anomalies from infrequent and subtle vari-
ations in sound. Then, Chapter 5 delved into SED in noisy environments,
which is critical for real-world applications such as public safety monitoring.
It proposed a low-complexity SED model with Atrous Spatial Pyramid Pool-
ing, which is used to enhance feature extraction. An entirely new dataset
called SEDDOB, which simulates real-world noisy environments in public
transportation, was introduced.

Chapter 6 presented the challenge of estimating the distance of the
speakers using single-channel audio signals. In addition, a framework that
combines CRNNs with attention mechanisms for estimating speaker dis-
tances in reverberant and noisy environments was introduced. The robust-
ness of this model was evidenced through experiments on synthetic, hybrid,
and real datasets that proved its usability in real-time applications such as
virtual assistants, smart devices, and other security or surveillance systems.

Finally, this Chapter summarizes this Thesis by reviewing the contri-
butions and presenting the practical use of the developed models. Many of
the limitations found while carrying out this research are discussed. Some
suggestions about future work involve the extension of these models towards
more complicated settings and integrating multimodal data to get a better
scene understanding. This Chapter emphasizes the value of the research in
further developing the field of sound-based scene understanding and serving
as a prologue for the following discussion.

7.2 Contributions to Sound Event
Recognition Field

The contributions of this Thesis span both theoretical advancements and
practical applications in sound-based scene understanding using Al tech-
niques:

m Efficient ASC models. The use of Chebyshev moments provided an
innovative approach to feature extraction, allowing the development
of models that achieve good performance while maintaining low com-
putational demands, making them suitable for deployment in mobile
and edge computing environments.

s Tackling the domain shift of ASC. A new semi-supervised ap-
proach has been devised by introducing an iterative F'T procedure.
This contribution improves the robustness of sound-based scene un-
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derstanding systems, making them more adaptable to diverse and un-
seen environments.

s Enhanced Unsupervised Anomaly Detection. Anomaly detec-
tion was advanced through attention-based models that effectively
focused on relevant patterns, improving the detection of rare and sub-
tle anomalies in complex acoustic environments. An initial effort was
made to explain data-driven UASD models.

s Robust and efficient SED Models for Noisy Environments.
By optimizing feature extraction using ASPP, the developed SED
models achieved greater accuracy in detecting sound events in noisy
environments, especially in public safety monitoring scenarios. The
introduction of the SEDDOB dataset also serves as a valuable resource
for future research on the detection of sound events in public transport
settings.

s Advanced Speaker Distance Estimation. It has been demon-
strated that estimating the distance between the speaker and an om-
nidirectional microphone is possible by exploiting the phase of the
STFT. In this direction, a robust approach to speaker distance esti-
mation was developed, using a combination of CRNNs and attention
mechanisms. In addition, the model demonstrated weak generaliza-
tion across different datasets and acoustic conditions, proving that
further study is required in this direction from the research commu-
nity.

7.3 Practical Applications

The models and methodologies developed in this Thesis have practical im-
plications across a range of industries and applications as follows:

s Mobile and IoT Devices. The low-complexity models for ASC
and SED are well-suited for integration into resource-constrained de-
vices, such as smartphones, wearable devices, and edge computing
platforms. Their real-time processing capabilities make them ideal
for applications like personal assistant technologies, autonomous ve-
hicles, and smart city infrastructure.

s Public Safety and Surveillance. The UASD and SED models de-
veloped in this Thesis have significant applications in public safety
and security systems. By detecting anomalies or safety-critical events
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like gunshots or altercations in noisy environments, these models can
enhance real-time surveillance and monitoring in public spaces, trans-
portation hubs, and large events.

m Voice-based Authentication systems. Together with the iden-
tification of anomalous sound events, it is fundamental to identify
whether a speech is real or not. Speech can be used to authorize a user
to access restricted or protected data. By introducing an attention
mechanism, thus improving the explainability, voice-based authenti-
cation systems can achieve higher accuracy and reliability, ensuring
secure and seamless user verification in a variety of conditions.

s Smart Home Systems. Estimating the distance of the speaker
has applications in smart home environments, where understanding
the distance of a speaker can improve interaction quality in voice-
controlled systems and virtual assistants. Its robustness in handling
reverberation and noise makes it suitable for various home and office
settings.

m Industrial Monitoring. The unsupervised anomaly detection model
is particularly relevant for industrial applications, where real-time
monitoring of machinery and equipment is crucial. By detecting sub-
tle anomalies without requiring labeled data, the model enables the
early identification of potential malfunctions, reducing maintenance
costs and operational downtime.

7.4 Limitations and Future Perspectives

Although this Thesis highlighted many contributions, there are still sev-
eral open problems to be solved in the context of scene understanding. Al-
though the models performed well on the tested datasets, generalizing them
to more diverse real-world environments presents a challenge. For example,
the ASC model may require further fine-tuning or domain adaptation tech-
niques [153] when applied to new acoustic environments not represented
in the datasets used. Future work could focus on gathering more diverse
real-world datasets to further improve model generalization. These datasets
could cover various room configurations, different microphone placements,
and a broader range of acoustic environments.

The speaker distance estimation model exhibited increasing errors be-
yond 6 meters, indicating the need for further refinement when estimating
distances over long ranges. Additional features, such as information on
the geometry of the room, could help mitigate this limitation. As already
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stated in Chapter 6, given such limitations, one probable line of improve-
ment comes in the form of generating better and finer labels. By providing
the model with strong labels that add speech activity and speaker distance
estimation to the dataset, it could learn the room acoustics better. Other
advantages of this augmentation are that the model can exploit additional
contextual clues and fine-tune its predictions, hence giving better perfor-
mance in the estimation of speaker distances with greater precision and
also the dynamics of speech activity. In this direction, extending the speaker
distance estimation framework to track moving speakers in real time would
be a valuable addition. Incorporating dynamic tracking algorithms or mo-
tion data could enable continuous updates to speaker position estimates,
enhancing applications in smart environments and surveillance.

Future work could focus on improving the temporal precision of the
SED model without significantly increasing computational demand. This
could involve optimizing feature extraction techniques or designing hybrid
models that balance spatial and temporal resolution.

In conclusion, while this Thesis primarily explored CNNs and RNNs,
future research could explore transformer-based architectures, which have
shown promise in capturing long-range dependencies in audio sequences.
Transformers [22] could enhance the anomaly detection and speaker dis-
tance estimation tasks by better modeling temporal dynamics. In addition,
integrating audio with other sensory modalities, such as video or text, could
improve scene understanding in complex environments. Multimodal mod-
els could provide a more holistic view, especially in situations where audio
alone is insufficient to interpret a scene accurately.
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Appendix A

Other Academic Contributions

A.1 Editorial Contributions

I am a Managing Editor for Signal Processing: Image Communications
Elsevier journal from September 2024.
I have been a reviewer for several journals and conferences.

e Journals. [EEE Transactions on Image Processing, IEEE Transac-
tions on Multimedia, Expert Systems with Application, Signal Pro-
cessing: Image Communications, IEEE Access.

e Conferences. IEEE International Conference on Multimedia & Expo
(ICME), IEEE International Conference on Acoustic, Speech, and Sig-
nal Processing (ICASSP), IEEE International Workshop on Multime-
dia Signal Processing (MMSP), Workshop on Detection and Clas-
sification of Acoustic Scenes and Events (DCASE), IEEE Interna-
tional Workshop on Information Forensics and Security (WIFS), In-
ternational Symposium on Image and Signal Processing and Analysis

(ISPA).

In 2023 I was Local Arrangement Co-Chair for ISPA and a Session Chair
(Visual Data Acquisition and Computation Session) for IEEE ICME 2024.

A.2 Teaching and Student Supervision

During my Ph.D., I delivered several guest lectures on specific topics in
various courses, providing expertise in information security and audio pro-
cessing. The courses were as follows:

o Multimedia Laboratory from B.Sc. in Electronic Engineering, Roma
Tre University;
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e FEthical Hacking from M.Sc. in Communication and Information Tech-
nology Engineering, Roma Tre University;

o Telecommunication Systems from B.Sc. in Electronic Engineering,
Roma Tre University;

o Internet & Multimedia from B.Sc. in Electronic Engineering, Roma
Tre University.

Moreover, I co-supervised the following undergraduate students:

» Marco Mirabella (Roma Tre University, M.Sc. in Communication and
Information Technology Engineering) with the thesis Binary Anomaly
Detection in Polyphonic Audio Signals, 2022.

» Martino Buongiorno (Roma Tre University, M.Sc. in Communica-
tion and Information Technology Engineering) with the thesis Classi-
ficazione di segnali audio mediante ['utilizzo di algoritmi di Machine
Learning, 2022.

m Nicolo Scialpi (University of Padua, M.Sc. in ICT for Internet and
Multimedia) with the thesis Traffic anomaly detection based on 2D
representation with computer vision and machine learning techniques,
2023.

m Mirko Mannari (University of Padua, B.Sc. in Information Engineer-
ing) with the thesis Rilevamento di anomalie del traffico di rete basato
su tecniche di elaborazione delle immagini, 2023.

» Sofia Vitale (Roma Tre University, M.Sc. in Communication and
Information Technology Engineering) with the thesis Unsupervised
Anomaly Detection on Audio Signals, 2024.

» Asma Mirkhan (University of Padua, M.Sc. in ICT for Internet and
Multimedia) with the thesis Enhancing Point Cloud Quality Assess-

ment with Grouped Convolutions: A Streamlined Approach Inspired
by COPP-Net, 2024.

A.3 Dissemination Activities

To translate knowledge and university research into the work world, several
“Third Mission” activities has been carried out during the Ph.D. period:
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n Notte della ricerca & Maker Faire 2022: an automatic emotion recog-
nition system (“I know that feel, bro!”) based on the analysis of body
language through Artificial Intelligence was presented. In addition,
part of Chapter 5 regarding the SED model was presented.

n Visiting Tampere University: visited Tampere University from Jan-
uary to April 2023 under the supervision of Prof. Virtanen to work
on the estimation of the speaker distance from single-channel audio
recordings;

n Maker Faire 2023: “VisionArt VR: What are you looking at?” a Vir-
tual Reality application for assessing the quality of immersive multi-
media where the user is free to move.

m Notte della ricerca 2023 € Roma Tre Open Night 2023: an automatic
emotion recognition system (“I know that feel, bro!”) based on the
analysis of body language through AI was presented.

n Maker Faire 2024: “VisionArt VR: What are you looking at?” a Vir-
tual Reality application for assessing the quality of immersive multi-
media where the user is free to move.
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Appendix B

List of Publications by the
Author

The following articles' have been published during the Ph.D. period:
Journal Articles

s Michael Neri*, F. Battisti, A. Neri, and M. Carli. “Sound Event
Detection for Human Safety and Security in Noisy Environments”, in:
IEEFE Access, 2022.

s K. Lamichhane, Michael Neri, P. Pradip, F. Battisti, and M. Carli,
“No-Reference Light Field Image Quality Assessment Exploiting Saliency”,
in: IEEE Transactions on Broadcasting, 2023.

s Michael Neri*, A. Politis, D. Krause, M. Carli, and T. Virtanen.
“Speaker Distance Estimation in Enclosures from Single-Channel Au-
dio”, in: IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2024.

s Michael Neri*, “Anomaly Detection and Classification of Audio Sig-
nals with Artificial Intelligence Techniques”, in: Science Talks, 2024.

s Michael Neri* and M. Carli. “Low-complexity Unsupervised Audio
Anomaly Detection exploiting Separable Convolutions and Angular
Loss”, in: IEEFE Sensors Letters, 2024.

s M. Bernabei, S. Colabianchi, M. Carli, F. Costantino, A. Ferrarotti,
Michael Neri, S. Stabile, “Enhancing occupational safety and health

training: a guideline for virtual reality integration”, in: IEEFE Access,
2024.

! An asterisk is present when a conference paper has been presented by me or a journal
article has been published with me as a corresponding author.
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s Michael Neri*, and F. Battisti, “Low-Complexity Patch-based No-
Reference Point Cloud Quality Metric exploiting Weighted Structure
and Texture Features”, in: IEEE Transactions on Broadcasting, 2025.

Conference papers

s L. Pallotta, Michael Neri, M. Buongiorno, A. Neri, and G. Giunta,
“A Machine Learning-Based Approach for Audio Signals Classification
using Chebychev Moments and Mel-Coefficients”, in: International
Conference on Frontiers of Signal Processing (ICFSP), 2022.

s S. Baldoni, F. Battisti, M. Brizzi, Michael Neri*, and Neri. A.,
“A Semantic Segmentation-based Approach for Train Positioning”,
in: ITM/PTTI Institute Of Navigation (ION), 2022.

s Michael Neri*, A. Ferrarotti, L. de Luisa, A. Salimbeni, and M.
Carli, “ParalMGC: Multiple Audio Representations for Synthetic Hu-
man Speech Attribution”, in: 10th Furopean Workshop on Visual
Information Processing (EUVIP), 2022.

s Michael Neri* and F. Battisti, “3D Object Detection on Synthetic
Point Clouds for Railway Applications”, in: 10th European Workshop
on Visual Information Processing (EUVIP), 2022.

s Michael Neri*, L. Pallotta, and M. Carli, “Low-Complexity En-
vironmental Sound Classification using Cadence Frequency Diagram

and Chebychev Moments”, in: International Symposium on Image
and Signal Processing and Analysis (ISPA), 2023.

s Michael Neri* and M. Carli, “Artificial Intelligence Techniques for
Quality Assessments of Immersive Multimedia”, in: ACM Interna-
tional Conference on Interactive Media Experiences (IMX), 2023.

s Michael Neri*, A. Politis, D. Krause, M. Carli, and T. Virtanen,
“Single-Channel Speaker Distance Estimation in Reverberant Envi-

ronments”, in: IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), 2023.

s Michael Neri* and M. Carli, “Semi-Supervised Acoustic Scene Clas-
sification under Domain Shift using Attention-based Separable Con-
volutions and Angular Loss”, in: IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), 2024.
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m R. Bentivenga, M. Bernabei, M. Carli, S. Colabianchi, F. Costantino,
A. Ferrarotti, Michael Neri, E. Pietrafesa, E. Sorrentino, S. Stabile,
“Advancing Occupational Safety and Health training: a Safety-II in-
tegration of the ADDIE model for virtual reality”, in: Methodologies
and Intelligent Systems for Technology Enhanced Learning, 14th In-
ternational Conference, 2024.

m R. Bentivenga, M. Bernabei, M. Carli, S. Colabianchi, F. Costantino,
A. Ferrarotti, Michael Neri, E. Pietrafesa, E. Sorrentino, S. Stabile,
“Transforming Training With New Enabling Technologies: A Proposal
To Verify The Efficacy Of Virtual Reality Tools In The Occupational
Health And Safety Sector”, in: 8th World Conference on Smart Trends
in systems, Security, and Sustainability (Worlds4), 2024.
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Appendix C

Acronyms

AT Artificial Intelligence

AE Autoencoder

ASC Acoustic Scene Classification

ASD Anomalous Sound Detection

ASPP Atrous Spatial Pyramid Pooling

AuSPP Audio Spatial Pyramid Pooling

AUC Area Under the Curve

AVM Automatic Vehicle Monitoring

BSMD-STD Binaural Signal Magnitude Difference Standard Deviation
CAS Chinese Acoustic Scene

CFD Cadence Frequency Diagram

CNN Convolutional Neural Network

COTS Commercial-off-the-shelf

CRNN Convolutional Recurrent Neural Network

DCASE Detection and Classification of Acoustic Scenes and Events
DCT Discrete Cosine Transform

DFT Discrete Fourier Transform
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DNN Deep Neural Network

DoA Direction of Arrival

DoAE Direction of Arrival Estimation
DRR Direct-to-Reverberant energy Ratio
ELU Exponential Linear Unit

ER Error Rate

ERB Equivalent Rectangular Bandwidth
ERM Empirical Risk Minimization
FCN Fully Convolutional Network

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPR False Positive Rate

FT Fine-Tuning

GAN Generative Adversarial Network
GAP Global Average Pooling

GDPR General Data Protection Regulation
GMM Gaussian Mixture Model

GRU Gated Recurrent Unit

GTCC GammaTone Cepstral Coefficient
HAS Human Auditory System

IID Interchannel Intensity Difference
ILD Interchannel Level Difference

IM Inlier Modeling

IR Information Retrieval

ITD Interchannel Time Difference
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KNN K-Nearest Neighbours

LDA Linear Discriminative Analysis
LPC Linear Predictive Coding

LSTM Long Short-Term Memory

LTI Linear Time-Invariant

MAE Mean Absolute Error

MAP Maximum A Posteriori Probability
MEMS Micro-ElectroMechanical Systems
MFCC Mel-Frequency Cepstrum Coefficients
ML Machine Learning

MLP MultiLayer Perceptron

MSE Mean Squared Error

MSC Magnitude Squared Coherence
PDE Partial Differential Equation
pPAUC partial Area Under the Curve

RF Random Forest

RIR Room Impulse Response

RNN Recurrent Neural Network

ReLU Rectified Linear Unit

ROC Receiving Operating Curve

SAM Spectrogram-aware Attention Module
SDE Source Distance Estimation

SED Sound Event Detection

SEDDOB Sound Event Detection Dataset On Bus

SELD Sound Event Localization and Detection
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SER Sound Event Recognition

SNR Signal-to-Noise Ratio

SOTA State of the Art

STFEFT Short-Time Fourier Transform

SVM Support Vector Machine

TPR True Positive Rate

UAS Urban Acoustic Scene

UASD Unsupervised Anomalous Sound Detection

VC Vapnik-Chervonenkis
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